Thử cái này xem:
1) [TEX]cos3x + \sqrt[]{2-cos^23x} = 2(1+ sin^22x)[/TEX]
2)
3) [TEX]cosx\sqrt[]{\frac{1}{cosx}-1} + cos3x\sqrt[]{\frac{1}{cosx}-1}[/TEX]
4) [TEX]cot2x + cot3x + \frac{1}{sinxsin2xsin3x} = 0[/TEX]
5) [TEX]sin^2x + \frac{1}{4}sin^23x = sinxsin^23x[/TEX]
6) [TEX]( cos^2x + \frac{1}{cos^2x} )^2 + ( sin^2x + \frac{1}{sin^2x} )^2 = 12+\frac{1}{2}siny[/TEX]
7) [TEX]sin4x - cos4x = 1 + 4(sinx - cos)[/TEX]
8) [TEX]cos2x + cos4x + cos6x = cosxcos2xcos3x + 2[/TEX]
9) [TEX]cos^5x + sin^5x + sin2x + cos2x = 1 + \sqrt[]{2}[/TEX]
10) [TEX]tan^22x + tan^23x + cot^25x = 1[/TEX]
4) [TEX]cot2x + cot3x + \frac{1}{sinxsin2xsin3x} = 0[/TEX]
[tex]\left{\begin{sinx \not =\ 0}\\{sin2x \not = \ 0}\\{sin3x \not = \ 0 [/tex]
[tex]\Rightarrow \left{\begin{x \not = \ \frac{\pi.k}{2}}\\{x \not = \ \frac{\pi.k}{3}[/tex]
[tex]Pt \ \Leftrightarrow \frac{cos3x.sin2x+cos2x.sin3x}{sin2x.sin3x}+\frac{1}{sinx.sin2x.sin3x}=0[/tex]
[tex]\Leftrightarrow sinx.sin5x=-1[/tex]
[tex]\left{\begin{sinx \geq -1}\\{sin5x \geq -1} [/tex]
[tex]\Rightarrow \left{\begin{sinx=\pm\ 1}\\{sin5x=\pm\ 1}[/tex]
8) [TEX]cos2x + cos4x + cos6x = cosxcos2xcos3x + 2[/TEX]
[tex]\Leftrightarrow 2(cos2x+cos4x+cos6x)=4+cos2x(cos2x+cos4x)[/tex]
[tex]\Leftrightarrow 2(cos2x+cos4x+cos6x)=4+cos^22x+cos2xcos4x[/tex]
[tex]\Leftrightarrow 4(cos2x+cos4x+cos6x)=8+1+cos4x+cos2x+cos6x[/tex]
[tex]\Leftrightarrow 4 cos^32x+2cos^22x-2cos2x-4=0[/tex]
[TEX]sin^2x + sin^2y + sin^2(x+y) = \frac{9}{4}[/TEX]
[tex]\mathrm{LHS:=sin^2 x + sin^2 y + sin ^2 (x+y) [/tex]
[tex]\mathrm{=\frac{1-cos2x}{2}+\frac{1-cos2y}{2}+1-cos^2(x+y)[/TEX]
[tex]\mathrm{Xet:f[cos(x+y)]=1- \frac{cos2x}{2}-\frac{cos2y}{2}+[1-cos^2(x+y)sin^2 x + sin^2 y + sin ^2 (x+y)]=0[/tex]
Đến đây ta đánh giá dễ dàng.
[TEX]( cos^2x + \frac{1}{cos^2x} )^2 + ( sin^2x + \frac{1}{sin^2x} )^2 = 12+\frac{1}{2}siny[/TEX]
[tex]\mathrm{2.LHS=2.(cos ^2 x + \frac{1}{cos ^2x })^2+ ( sin ^2 x + \frac{1}{sin ^2 x})^2[/tex]
[tex]\mathrm{\geq (1+\frac{1}{sin^2x}+\frac{1}{cos^2x})^2[/tex]
[tex]\mathrm{=(1+\frac{sin^2x+cos^2x}{sin^2x.cos^2x})^2[/tex]
[tex]\mathrm{\geq (1+\frac{1}{\frac{1}{4}.sin^22x})^2 \geq \frac{25}{2} \geq 12+\frac{1}{2}.siny[/tex]
[tex]\mathrm{\Rightarrow (1) \Leftrightarrow \ Dang \ thuc \ xay \ ra[/tex]
Hoặc:
2,
[TEX]sin^4x+cos^4x+\frac{1}{sin^4x}+\frac{1}{cos^4x}=8+\frac{siny}{2}[/TEX]
Có :[TEX]sin^4x+cos^4x=1-\frac{sin^22x}{2} \ge \frac{1}{2}[/TEX]
[tex]\frac{1}{sin^4x}+\frac{1}{cos^4x}=\frac{16(sin^4x+cos^4x)}{sin^42x} \ge 8+\frac{1}{2}[/tex]
Nên :[TEX]VT \ge 8+\frac{1}{2}[/TEX]
[tex]Vp=\frac{siny}{2}+8 \le 8+\frac{1}{2} [/tex]
Dấu = xảy ra: [TEX]\Leftrightarrow \left{\begin{x=\frac{\pi}{4}+\frac{k \pi}{2}\\ y=\frac{\pi}{2}+k2 \pi[/TEX]