Giải phương trình lượng giác

X

xuanquynh97

4,cotx1=cos2x1+tanx+sin2x12sin2xcotx-1=\frac{cos2x}{1+tanx}+sin^2x-\frac{1}{2}sin2x
ĐK tanx1;sin2x0tanx \not=-1; sin2x \not=0

PT \Leftrightarrow cossinx1=cosx(cos2xsin2x)sinx+cosx+sinx(sinxcosx)\dfrac{cos}{sinx}-1=\dfrac{cosx(cos^2x-sin^2x)}{sinx+cosx}+sinx(sinx-cosx)

\Leftrightarrow cosxsinxsinx=cosx(cosxsinx)+sinx(sinxcosx)\dfrac{cosx-sinx}{sinx}=cosx(cosx-sinx)+sinx(sinx-cosx)

\Leftrightarrow (cosxsinx)(1sinxcosx+sinx)=0(cosx-sinx)(\dfrac{1}{sinx}-cosx+sinx)=0

\Leftrightarrow (cosxsinx)(1cosxsinx+sin2x)=0(cosx-sinx)(1-cosxsinx+sin^2x)=0

\Leftrightarrow (cosxsinx)(112sin2x+1cos2x2)=0(cosx-sinx)(1-\dfrac{1}{2}sin2x+\dfrac{1-cos2x}{2})=0

\Leftrightarrow (cosxsinx)(3sin2xcos2x)=0(cosx-sinx)(3-sin2x-cos2x)=0
 
Last edited by a moderator:
X

xuanquynh97

5.ĐK: $\begin{cases} cosx \not=0&\\
sinx \not=0&
\end{cases}$
\Leftrightarrow $\begin{cases} x\not=\frac{\pi}{2}+k\pi&\\
x\not=k\pi&
\end{cases}$
PT \Leftrightarrow cosxsinxsinxcosx+4sin2x=2sin2x\frac{cosx}{sinx}-\frac{sinx}{cosx}+4sin2x=\frac{2}{sin2x}
\Leftrightarrow 2cos2xsin2x+4sin2x=2sin2x\frac{2cos2x}{sin2x}+4sin2x=\frac{2}{sin2x}
\Leftrightarrow 2cos2x+4sin22x=22cos2x+4sin^22x=2
\Leftrightarrow 2cos2x+4(1cos22x)=22cos2x+4(1-cos^22x)=2
\Leftrightarrow 4cos22x2cos2x2=04cos^22x-2cos2x-2=0
\Leftrightarrow $\left[ \begin{array}{ll} cos2x=1&\\
cos2x=\frac{-1}{2}&
\end{array} \right.$
Giải tìm x đối chiếu điều kiện
 
P

patranopcop

Giải phương trình

1,(1+sin2x)cosx+(1+cos2x)sinx=1+sin2x (1+sin^2x)cosx+(1+cos^2x)sinx=1+sin2x

2,2sin22x+sin7x1=sinx 2sin^22x+sin7x-1=sinx



4,1sinx+1sin(x1,5π)=4sin(7π4x)\frac{1}{sinx}+\frac{1}{sin(x-1,5\pi)}=4sin(\frac{7\pi}{4}-x)

giúp mình nha , tks nhiều ! :D
 
Last edited by a moderator:
X

xuanquynh97

(1+sin2x)cosx+(1+cos2x)sinx=1+sin2x(1+sin^2x)cosx+(1+cos^2x)sinx=1+sin2x

PT \Leftrightarrow cosx+sinx2.cosx+sinx+sinx.cosx2=1+sin2x cosx + sinx^2 . cosx + sinx + sinx . cosx^2 = 1 + sin2x

<=>cosx+sinx+sinx2.cosx+sinx.cosx2=1+sin2x<=> cosx + sinx + sinx^2 . cosx + sinx . cosx^2 = 1 + sin2x

<=>(cosx+sinx)+sinx.cosx(cosx+sinx)=1+sin2x<=> ( cosx + sinx) + sinx.cosx ( cosx + sinx) = 1 + sin2x

<=>(cosx+sinx)(sinx.cosx+1)=1+2sinx.cosx<=> ( cosx + sinx) ( sinx.cosx + 1) = 1 + 2sinx.cosx

Đặt t=cosx + sinx
 
X

xuanquynh97

2sin22x+sin7x1=sinx2sin^22x+sin7x-1=sinx

PT \Leftrightarrow 2sin22x+sin7x1=sinx2sin^22x + sin7x - 1= sinx

<=>(12sin22x)+(sin7xsinx)=0 <=> -( 1 - 2sin^22x ) + ( sin7x - sinx) =0

<=>cos4x+2cos4xsin3x=0 <=> -cos4x + 2cos4xsin3x =0

<=>cos4x(1+2sin3x)=0 <=> cos4x( -1 + 2sin3x) =0
 
X

xuanquynh97

1sinx+1sin(x1,5π)=4sin(7π4x)\frac{1}{sinx}+\frac{1}{sin(x-1,5\pi)}=4sin(\frac{7\pi}{4}-x)

ĐK: sinx0;sin(x1,5π)0sinx \not=0; sin(x-1,5\pi) \not=0

PT \Leftrightarrow 1sinx+1cosx=4sin(π4+x)\dfrac{1}{sinx}+\dfrac{1}{cosx}=4sin(\dfrac{\pi}{4}+x)

\Leftrightarrow sinx+cosxsinxcosx=4(sinx+cosx)2\dfrac{sinx+cosx}{sinxcosx}=\dfrac{4(sinx+cosx)}{\sqrt{2}}

\Leftrightarrow (sinx+cosx)(1sinxcosx42)=0(sinx+cosx)(\dfrac{1}{sinxcosx}-\dfrac{4}{\sqrt{2}})=0
 
P

patranopcop

Phương trình lượng giác

Giải phương trình :

1,sin2(x2π4)tan2xcos2x2=0sin^2(\frac{x}{2}-\frac{\pi}{4})tan^2x-cos^2\frac{x}{2}=0

2,(sinx2+cosx2)2+3cosx=2 (sin{x\over2} +cos{x\over2})^2+\sqrt{3}cosx=2

giúp mình nha , tks nhiều ! :D
 
Last edited by a moderator:
X

xuanquynh97

Bài 1 ĐK cosx0cosx \not=0

PT \Leftrightarrow (sinx2cosx2)22.sin2xcos2x1cosx2=0\dfrac{(sin\dfrac{x}{2}-cos\dfrac{x}{2})^2}{2}.\dfrac{sin^2x}{cos^2x}-\dfrac{1-cosx}{2}=0

\Leftrightarrow 1sinx2.sin2xcos2x1cosx2=0\dfrac{1-sinx}{2}.\dfrac{sin^2x}{cos^2x}-\dfrac{1-cosx}{2}=0

\Leftrightarrow sin2x(1sinx)(1cosx)cos2x2cos2x=0\dfrac{sin^2x(1-sinx)-(1-cosx)cos^2x}{2cos^2x}=0

\Leftrightarrow (sinxcosx)(sinx+cosx1sinxcosx)=0(sinx-cosx)(sinx+cosx-1-sinxcosx)=0
 
X

xuanquynh97

Bài 2 PT \Leftrightarrow 1+sinx+3cosx=21+sinx+\sqrt{3}cosx=2

\Leftrightarrow sinx+3cosx=1sinx+\sqrt{3}cosx=1

\Leftrightarrow sinx12+32cosx=12sinx\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}

\Leftrightarrow sin(x+π3)=12sin(x+\dfrac{\pi}{3})=\dfrac{1}{2}
 
C

chiconemthoi365

cám ơn các bạn đã giải nha, rất dễ hiểu, mình đã biết làm những dạng bài này rồi
 
T

touyen_touyen84

lượng giác

1) căn3 sin 2x + cos2x= 2cosx-1
3) sin3x + cos3x - sinx- cosx= căn 2 sinxsin 3x
4) 1+ tanx = 2căn2. sin(x+ bi trên 4)
5) sin5x+2cos^2 = 1
6) sin3x+ cos2x- sinx =O
7) sin2x.cosx+ sinx.cosx= cos2x + sinx+ cosx
8) (sin2x+ cos2x)cosx + 2cos2x - sinx = O
 
Last edited by a moderator:
T

trantien.hocmai

$\text{câu 8} \\
(\sin 2x+\cos 2x)\cos x+2\cos 2x-\sin x=0 \\
\leftrightarrow \sin 2x.\cos x+\cos 2x.\cos x+2\cos 2x-\sin x=0 \\
\leftrightarrow 2\sin .\cos ^2x-\sin x+\cos 2x.\cos x+2\cos 2x=0 \\
\leftrightarrow \sin x(2\cos ^2x-1)+\cos 2x.\cos x+2\cos 2x=0 \\
\leftrightarrow \cos 2x.\sin x+\cos 2x.\cos x+2\cos 2x=0$
 
Last edited by a moderator:
T

trantien.hocmai

$\text{câu 7} \\
\sin 2x.\cos x+\sin x.\cos x=\cos 2x+\sin x+\cos x \\
\leftrightarrow 2\sin x.\cos ^2x+\sin x.\cos x=2\cos ^2x-1+\sin x+\cos x \\
\leftrightarrow \sin x(2\cos ^2x+\cos x)-(2\cos ^2x+\cos x)=\sin x-1 \\
\leftrightarrow (\sin x-1)(2\cos ^2x+\cos x)-(\sin x-1)=0 \\
\leftrightarrow (\sin x-1)(2\cos ^2x+\cos x-1)=0$
 
T

trantien.hocmai

$\text{câu 6} \\
\sin 3x+\cos 2x-\sin x=0 \leftrightarrow 2\cos 2x.\sin x+\cos 2x=0 \\
\leftrightarrow \cos 2x(2\sin x+1)=0$
 
B

buivanbao123

6) sin3x+ cos2x- sinx =O
\Leftrightarrow 2cos2x.sinx+cos2x=0
\Leftrightarrow cos2x(2sinx+1)=0
đến đây dê rồi
 
T

trantien.hocmai

$\text{câu 4} \\
1+\tan x=2\sqrt{2}\sin (x+\frac{\pi}{4}) \\
\leftrightarrow \frac{\sin x+\cos x}{\cos x}=2(\sin x+\cos x) \\
\leftrightarrow \sin x+\cos x=2\cos x(\sin x+\cos x) \\
\leftrightarrow (\sin x+\cos x)(1-2\cos x)=0$
 
T

trantien.hocmai

$\text{câu 3} \\
\sin 3x+\cos 3x-\sin x-\cos x=\sqrt{2}\sin x.\sin 3x \\
\leftrightarrow \sin (3x+\frac{\pi}{4})-\sin (x+\frac{\pi}{4})=\sin x.\sin 3x \\
\leftrightarrow 2\cos (2x+\frac{\pi}{4}).\sin (x)=\sin x.\sin 3x$
 
X

xuanquynh97

Bài 1:
3sin2x+cos2x=2cosx1\sqrt{3}sin2x + cos2x = 2 cosx - 1

Đã giải tại ĐÂY

Bài 5
sin5x+2cos2x=1sin5x+2cos^2x = 1

PT \Leftrightarrow Sin5x=12Cos2xSin5x = 1 - 2Cos^2x

\Leftrightarrow Cos(π25x)=Cos2xCos(\dfrac{\pi}{2} - 5x) = -Cos2x

\Leftrightarrow Cos(π25x)=Cos(π2x)Cos(\dfrac{\pi}{2} - 5x) = Cos(\pi - 2x)
 
D

demon311

2)===================
$\sin 3x+\cos 3x-\sin x-\cos x=\sqrt{ 2}\sin x \sin 3x \\
2(\cos 2x \sin x -\sin 2x \sin x)= \sqrt{ 2}\sin x \sin 3x \\
\sin x(2.\cos 2x -2\sin 2x-\sqrt{ 2}\sin 3x)=0 \\
\text{TH1:} \sin x=0 \rightarrow x=k \pi \; (k \in Z) \\
\text{TH2}: 2.\cos 2x -2\sin 2x-\sqrt{ 2}\sin 3x=0 \\

$
 
Top Bottom