Giải phương trình lượng giác

T

thoconcute

6) sin3x+ cos2x- sinx =O
2cos2x.sinx+cos2x=0
cos2x(2sinx+1)=0

Giải thích cho mình phần in đậm nhé!

Giải bài này luôn:

[TEX]cos^23x.cos2x-cos^2x=0[/TEX] Giải pt đó
 
D

demon311

6) sin3x+ cos2x- sinx =O
2cos2x.sinx+cos2x=0
cos2x(2sinx+1)=0

Giải thích cho mình phần in đậm nhé!

Giải bài này luôn:

[TEX]cos^23x.cos2x-cos^2x=0[/TEX] Giải pt đó

In đậm: $\sin 3x-\sin x=2\cos 2x\sin x$

PT:

$\cos^2 3x.(2\cos^2 x-1)-\cos^2 x=0 \\
\leftrightarrow 2\cos^2 3x.\cos^2 x=\cos^2 3x+\cos^2 x $
Dùng Cauchy: Ta có:

$\cos^2 3x +\cos^2 x \ge 2|\cos 3x|.|cos x| \ge 2\cos^2 x \cos^2 3x$

DBXR: $\left[ \begin{array}{ll}
\cos 3x=\cos x \\
\cos 3x =-\cos x
\end{array} \right. \\
\leftrightarrow \left[ \begin{array}{ll}
4\cos^3 x-3\cos x=\cos x \\
4\cos^3 x-3\cos x=-\cos x
\end{array} \right.\\
\leftrightarrow \left[ \begin{array}{ll}
\cos^3 x-\cos x =0 \\
2\cos^3 x-\cos x=0
\end{array} \right.\\
\leftrightarrow \left[ \begin{array}{ll}
\cos x=0 \\
\cos x=1 \\
\cos x=-1 \\
\cos x=\dfrac{ \sqrt{ 2}}{2} \\
\cos x=-\dfrac{ \sqrt{ 2}}{2}
\end{array} \right. \\
\leftrightarrow \left[ \begin{array}{ll}
x=\dfrac{ \pi}{2}+k\pi \\
x= k\pi \\
x=\dfrac{ \pi}{4} +k\pi
\end{array} \right. \;\;\;(k \in Z)$
 
P

patranopcop

Giải phương trình

1,[tex]4(sin2x+\frac{sin3x}{1-2cosx})=3-cos2x [/tex]

2,[tex]sin3x-4cos2x-3sinx+4=0 [/tex]

3,[tex]\frac{cos^6x+sin^6x+sin^2xcos^2x-sinxcosx}{2cosx-\sqrt{2}}=0 [/tex]

4,[tex]sin^22x+cos^23x=sin^2x+cos^24x [/tex]

5,[tex]cosxcot^2x+\frac{1}{cosx}=\frac{4-sinxcosx}{sinx} [/tex]

6,[tex]sin3x+cos2x+sinx+\frac{1}{2}sin^22x+1=0 [/tex]

giúp mình nha , tks nhiều ! :D
 
T

trantien.hocmai

$\text{câu 4} \\
\sin ^22x+\cos ^23x=\sin ^2x+\cos ^24x \\
\leftrightarrow \cos 6x-\cos 4x=\cos 8x-\cos 2x \\
\leftrightarrow \cos 6x+\cos 2x=\cos 8x+\cos 4x \\
\leftrightarrow 2\cos 4x.\cos 2x=2\cos 6x.\cos 2x$
 
T

trantien.hocmai

$\text{câu 3} \\
PT \leftrightarrow \sin ^6x+\cos ^6x+\sin ^2x.\cos ^2x-\sin x.\cos x=0 \\
\leftrightarrow 1-\frac{3}{4}\sin ^22x+\frac{1}{4}\sin ^22x-\frac{1}{2}\sin 2x$
 
P

patranopcop

1,[tex]\frac{2(sin^4x+cos^4x)+2sin(x+\frac{\pi}{4})cos(x-\frac{\pi}{4})-3}{\sqrt{2}-2sinx}=0 [/tex]

2,[tex](sinx+cosx)cotx=cos2xcosx+2sin^3x+cos^3x+sin^2xcosx [/tex]



4,[tex](2cosx-\sqrt{3})(2sinx+cosx)=sin2x-\sqrt{3}sinx [/tex]

giúp mình nha , tks nhiều ! :D
 
Last edited by a moderator:
T

trantien.hocmai

$\text{câu 5} \\
\cos x.\cot ^2x+\frac{1}{\cos x}=\frac{4-\sin x.\cos x}{\sin x} \\
\leftrightarrow \cos x.\frac{\cos ^2x}{\sin ^2x}+\frac{1}{\cos x}=\frac{4-\sin x.\cos x}{\sin x} \\
\leftrightarrow \cos ^4x+\sin ^2x=4\sin x.\cos x-\sin ^2x.\cos ^2x \\
$
 
X

xuanquynh97

$4(sin2x+\dfrac{sin3x}{1-2cosx})=3-cos2x $

ĐK...

PT \Leftrightarrow $4sin2x(1−2cosx)+4sin3x=(cos2x−3)(2cosx−1)$

\Leftrightarrow $4sin2x−8sin2xcosx+4sin3x=(2cosx−1)(cos2x−3)$

\Leftrightarrow $8sinxcosx−4sinx=(2cosx−1)(cos2x−3)$

\Leftrightarrow $(2cosx−1)(4sinx−cos2x+3)=0$
 
T

trantien.hocmai

$\text{câu 1} \\
4(\sin 2x+\frac{\sin 3x}{1-2\cos x})=3-\cos 2x \\
\leftrightarrow 4\sin 2x-8.\sin 2x.\cos x+4\sin 3x=3-6.\cos x-\cos 2x+2\cos x.\cos 2x \\
\leftrightarrow 4\sin 2x-4(\sin 3x+\sin x)+4\sin 3x=3-6\cos x-\cos 2x+2\cos x.\cos 2x \\
\leftrightarrow 4\sin 2x-4\sin x=3(1-2\cos x)-\cos 2x(1-2\cos x) \\
\leftrightarrow 4\sin x(2\cos x-1)=3(1-2\cos x)-\cos 2x(1-2\cos x)$
 
T

trantien.hocmai

$\text{câu 2} \\
\sin 3x-4\cos 2x-3\sin x+4=0 \\
\leftrightarrow 2\cos 2x.\sin x-4\cos 2x-2\sin x+4=0 \\
\leftrightarrow 2\cos 2x(\sin x-2)-2(\sin x-2)=0$
 
X

xuanquynh97

$1.\dfrac{2(sin^4x+cos^4x)+2sin(x+\dfrac{\pi}{4})cos(x-\dfrac{\pi}{4})-3}{\sqrt{2}-2sinx}=0$

PT \Leftrightarrow $\leftrightarrow 2(sin^4x+cos^4x)+2sin(x+\frac{\pi}{4})cos(x-\frac{\pi}{4})-3=0$

$\leftrightarrow 2(1-2sin^2xcos^2x)-cos2x-3=0$

$\leftrightarrow 1+cos^22x-cos2x-3=0$
 
Last edited by a moderator:
T

trantien.hocmai

$\text{câu 6} \\
PT \leftrightarrow -4\sin ^3x+4\sin x+2\cos ^2x+2\sin ^2x.\cos ^2x=0 \\
\leftrightarrow 4\sin x.\cos ^2x+2\cos ^2x+2\sin ^2x.\cos ^2x=0$
 
T

trantien.hocmai

$\text{câu 4} \\
PT \leftrightarrow (2\cos x-\sqrt{3})(2\sin x+\cos x)=\sin x(2\cos x-\sqrt{3}) \\
\text{con lạy má lần sau đừng cho chơi nguyên bàn chân nhá con chơi không lạy má đâu}$
 
X

xuanquynh97

$4.10cos²x + cosx - 2 = 3( cosx - cos2x )cotg²x$

PT \Leftrightarrow $( 10cos²x + cosx - 2 )sin²x = 3( cosx - 2cos²x + 1)cos²x$

\Leftrightarrow $( 10cos²x + cosx - 2 )sin²x = 3( -2cos²x + cosx + 1)cos²x$

\Leftrightarrow $( 5cosx - 2 )( 2cosx + 1 )(1 - cos²x) = -3( 2cosx + 1 )( cosx - 1 )cos²x $

\Leftrightarrow $( 5cosx - 2 )( 2cosx + 1 )(1 - cosx)(1 + cosx) = 3( 2cosx + 1 )( 1 - cosx )cos²x$

\Leftrightarrow $( 5cosx - 2 )( 2cosx + 1 )(1 - cosx)(1 + cosx) - 3( 2cosx + 1 )( 1 - cosx )cos²x = 0$

\Leftrightarrow $(2cosx + 1)( 1 - cosx) [ ( 5cosx - 2 )(1 + cosx) - 3cos²x ] = 0$
 
T

thuong0504

Ôi trời, nhìn bài giải của demon mà choáng

Cách 2:

PT \Leftrightarrow[TEX](1+cos6x).cos2x-(1+cos2x)=0[/TEX]

\Leftrightarrow[TEX]cos6x.cos2x-1=0[/TEX]

\Leftrightarrowcos[TEX]8x+cos4x-2=0[/TEX]

\Leftrightarrow[TEX]2cos^2.4x+cos4x-2=0[/TEX]

\Leftrightarrow[TEX]cos4x=1 [/TEX]

( [TEX]cos4x=\frac{-3}{2}[/TEX] loại)

\Leftrightarrow[TEX]x=k.\frac{\pi}{2}[/TEX]
 
H

huong_ngoc_98@yahoo.com.vn

Pt lượng giác

1, $cos2x+cos^2\left ( x+\frac\pi {2} \right )-sin(x+3\pi )-1 =0$
2, $sinx.sin2x.sin3x=\frac{1}{4}sin4 x$
3, $cos \frac{x}{2}+cos x+ cos \frac{3x}{2} +cos2x=0$
4, $sin^2 x + sin^2 3x = cos^2 2x + cos^2 4x$
5, $sin^2 2x - sin^2 3x = sin^2 4x - sin^2 5x$

Chú ý cách đặt tiêu đề: [Môn+lớp] Nội dung tiều đề
 
Last edited by a moderator:
Top Bottom