X
xuanquynh97
ĐK $tanx \not=-1; sin2x \not=0$4,[tex]cotx-1=\frac{cos2x}{1+tanx}+sin^2x-\frac{1}{2}sin2x [/tex]
PT \Leftrightarrow $\dfrac{cos}{sinx}-1=\dfrac{cosx(cos^2x-sin^2x)}{sinx+cosx}+sinx(sinx-cosx)$
\Leftrightarrow $\dfrac{cosx-sinx}{sinx}=cosx(cosx-sinx)+sinx(sinx-cosx)$
\Leftrightarrow $(cosx-sinx)(\dfrac{1}{sinx}-cosx+sinx)=0$
\Leftrightarrow $(cosx-sinx)(1-cosxsinx+sin^2x)=0$
\Leftrightarrow $(cosx-sinx)(1-\dfrac{1}{2}sin2x+\dfrac{1-cos2x}{2})=0$
\Leftrightarrow $(cosx-sinx)(3-sin2x-cos2x)=0$
Last edited by a moderator: