D
demon311
3)
$\cos \dfrac{ x}{2}+\cos x + \cos \dfrac{ 3x}{2}+ \cos 2x=0 \\
\leftrightarrow \cos x .\cos \dfrac{x}{2} + \cos \dfrac{ 3x}{2}. \cos \dfrac{ x}{2} =0 \\
\leftrightarrow \cos \dfrac{ x}{2} ( \cos x + \cos \dfrac{ 3x}{2})=0 \\
\leftrightarrow \left[ \begin{array}{ll}
\cos \dfrac{ x}{2} =0 \\
\cos x + \cos \dfrac{ 3x}{2} =0
\end{array} \right. \\
\leftrightarrow \left[ \begin{array}{ll}
\cos \dfrac{ x}{2}=0 \\
\cos \dfrac{ 5x}{4}.\cos \dfrac{ x}{4} = 0
\end{array} \right. \\
\leftrightarrow \left[ \begin{array}{ll}
x = k2\pi \\
x = k \dfrac{ 4\pi}{5} \\
x = k 4\pi
\end{array} \right. \;\;\;\; (k \in Z)\\
\leftrightarrow \left[ \begin{array}{ll}
x=k2\pi \\
x=k \dfrac{ 4\pi}{5}
\end{array} \right. \;\;\;\; (k \in Z )$
$\cos \dfrac{ x}{2}+\cos x + \cos \dfrac{ 3x}{2}+ \cos 2x=0 \\
\leftrightarrow \cos x .\cos \dfrac{x}{2} + \cos \dfrac{ 3x}{2}. \cos \dfrac{ x}{2} =0 \\
\leftrightarrow \cos \dfrac{ x}{2} ( \cos x + \cos \dfrac{ 3x}{2})=0 \\
\leftrightarrow \left[ \begin{array}{ll}
\cos \dfrac{ x}{2} =0 \\
\cos x + \cos \dfrac{ 3x}{2} =0
\end{array} \right. \\
\leftrightarrow \left[ \begin{array}{ll}
\cos \dfrac{ x}{2}=0 \\
\cos \dfrac{ 5x}{4}.\cos \dfrac{ x}{4} = 0
\end{array} \right. \\
\leftrightarrow \left[ \begin{array}{ll}
x = k2\pi \\
x = k \dfrac{ 4\pi}{5} \\
x = k 4\pi
\end{array} \right. \;\;\;\; (k \in Z)\\
\leftrightarrow \left[ \begin{array}{ll}
x=k2\pi \\
x=k \dfrac{ 4\pi}{5}
\end{array} \right. \;\;\;\; (k \in Z )$