R
riverflowsinyou1
Cho a,b,c > 0; $a + b + c \le 3/2$
Tìm Min $S = \sqrt{a^2 + \dfrac{1}{b^2}} + \sqrt{b^2 + \dfrac{1}{c^2}} + \sqrt{c^2 + \dfrac{1}{a^2}}$
Áp dụng AM - GM ạ!
Cái này $AM-GM$ @-) hơi căng nhỉ ?
$\sqrt{a^2+\frac{1}{16b^2}+....+\frac{1}{16b^2}}+\sqrt{b^2+\frac{1}{16c^2}+....+\frac{1}{16c^2}}+\sqrt{c^2+\frac{1}{16a^2}+....+\frac{1}{16a^2}}$
\geq $\sqrt{17.\sqrt[17]{â^2.\frac{1}{16.b^2}......\frac{1}{16b^2}}}+\sqrt{17.\sqrt[17]{b^2.\frac{1}{16.c^2}......\frac{1}{16c^2}}}+\sqrt{17.\sqrt[17]{c^2.\frac{1}{16.a^2}......\frac{1}{16a^2}}}$=$\sqrt{17.\sqrt[17]{\frac{a^2}{16^16.b^32}}}+\sqrt{17.\sqrt[17]{\frac{b^2}{16^16.c^32}}}+\sqrt{17.\sqrt[17]{\frac{c^2}{16^16.a^32}}}$. \geq $3.\sqrt{17}.\sqrt[17]{\frac{a}{16^8.(abc)^5}}$ \geq $\frac{3.\sqrt{17}}{2.\sqrt[17]{(\frac{2a+2b+2c}{3})^{15}}}$ \geq $\frac{3.\sqrt{17}}{2}$
Kết luận ...................... dấu bằng xảy ra khi $a=b=c=0,5$
Cái này Mincopxki có vẻ dễ hơn nhỉ @-)