Mình nghĩ đề là GTLN
* [tex]3 - \sum \frac{2x}{2x+y}= 3 - \sum \frac{2xy}{2xy+y^2} = \sum \frac{y^2}{2xy-y^2}[/tex]
* [tex]Cauchy : \sum \frac{y^2}{2xy+y^2} + \sum \frac{2xy+y^2}{(x+y+z)^2} ≥ \sum \frac{2y}{x+y+z}[/tex]
[tex]=> 3 - \sum \frac{2x}{2x+y} + \sum \frac{2xy+y^2}{(x+y+z)^2} ≥ \frac{2x+2y+2z}{x+y+z}[/tex]
[tex]<=> 3 - 2B + \frac{2xy+2yz+2zx + y^2+z^2+x^2}{(x+y+z)^2} ≥ 2[/tex]
[tex]<=> 3 - 2B + 1 ≥ 2[/tex]
[tex]<=> 3- 2B+1 \geq 2 => B \leq 1[/tex]
* [tex]3 - \sum \frac{2x}{2x+y}= 3 - \sum \frac{2xy}{2xy+y^2} = \sum \frac{y^2}{2xy-y^2}[/tex]
* [tex]Cauchy : \sum \frac{y^2}{2xy+y^2} + \sum \frac{2xy+y^2}{(x+y+z)^2} ≥ \sum \frac{2y}{x+y+z}[/tex]
[tex]=> 3 - \sum \frac{2x}{2x+y} + \sum \frac{2xy+y^2}{(x+y+z)^2} ≥ \frac{2x+2y+2z}{x+y+z}[/tex]
[tex]<=> 3 - 2B + \frac{2xy+2yz+2zx + y^2+z^2+x^2}{(x+y+z)^2} ≥ 2[/tex]
[tex]<=> 3 - 2B + 1 ≥ 2[/tex]
[tex]<=> 3- 2B+1 \geq 2 => B \leq 1[/tex]
Last edited: