Topic tích phân 12

  • Thread starter djbirurn9x
  • Ngày gửi
  • Replies 178
  • Views 18,829

M

mekhantilus

[TEX] [TEX]16/\int\limit_{}^{}{tan3xdx[/TEX]

[TEX]\int\limit_{}^{}{tan3xdx[/TEX]
[TEX]= -\frac{ln(cos3x)}{3} +C[/TEX]

[TEX]34/\int\limit_{0}^{1}{\frac{x^4 + 1}{x^6 + 1}dx[/TEX]

[TEX]\int\limit_{0}^{1}{\frac{x^4 + 1}{x^6 + 1}dx[/TEX]
[TEX]= \int\limit_{0}^{1}{\frac{x^4 - x^2 +1 + x^2}{(x^2+1)(x^4 - x^2 +1)}dx[/TEX]
[TEX]= \int\limit_{0}^{1}{\frac{1}{x^2 + 1}dx + \int\limit_{0}^{1}\frac{x^2}{x^6 +1}dx[/TEX]

[TEX]I = \int\limit_{0}^{1}{\frac{1}{x^2 + 1}dx[/TEX]
Đặt [TEX]x = tany[/TEX] ; [TEX]y\in(-\frac{\pi}{2} ; \frac{\pi}{2})[/TEX]
[TEX]\Rightarrow dx = (tan^2y + 1)dy[/TEX]
[TEX]x = 0 \Rightarrow y = 0[/TEX]
[TEX]x = 1 \Rightarrow y = \frac{pi}{4}[/TEX]
[TEX]\Rightarrow I = \int\limit_{0}^{\frac{pi}{4}}dy[/TEX]
[TEX]= \frac{pi}{4}[/TEX]

[TEX]J = \int\limit_{0}^{1}\frac{x^2}{x^6 +1}dx[/TEX]
[TEX]= \frac{1}{3}\int\limit_{0}^{1}\frac{3x^2}{x^6 +1}dx[/TEX]
Đặt [TEX]t = x^3[/TEX]
[TEX]\Rightarrow dt = 3x^2[/TEX]
[TEX]x = 0 \Rightarrow t = 0[/TEX]
[TEX]x = 1 \Rightarrow t = 1[/TEX]
[TEX]\Rightarrow J = \frac{1}{3}\int\limit_{0}^{1}\frac{1}{t^2 +1}dx[/TEX]
[TEX]= \frac{I}{3}[/TEX]
[TEX]= \frac{pi}{12}[/TEX]

[TEX]\Rightarrow \int\limit_{0}^{1}{\frac{x^4 + 1}{x^6 + 1}dx = I + J = \frac{pi}{3}[/TEX]

[TEX]46/\int\limit_{0}^{\frac{\pi}{4}}{e^{3x}sin4x}dx[/TEX]

[TEX]I = \int\limit_{0}^{\frac{\pi}{4}}{e^{3x}sin4x}dx[/TEX]

Đăt:
[TEX]u = e^{3x} \Rightarrow du = 3e^{3x}dx[/TEX]
[TEX]dv = sin4xdx \Rightarrow v = -\frac{cos4x}{4}[/TEX]

[TEX]\Rightarrow I = -\frac{e^{\frac{3pi}{4}}}{4}} - \frac{1}{4} + \frac{3}{4}.\int\limit_{0}^{\frac{\pi}{4}}{e^{3x}cos4x}dx [/TEX]

Đặt:
[TEX]u = e^3x \Rightarrow du = 3e^{3x}dx[/TEX]
[TEX]dv = cos4xdx \Rightarrow v = \frac{sin4x}{4}[/TEX]

[TEX]\Rightarrow I = -\frac{e^{\frac{3pi}{4}}}{4}} - \frac{1}{4} - \frac{9}{16}I[/TEX]
[TEX]\Leftrightarrow \frac{25}{16}I = -\frac{e^{\frac{3pi}{4}}}{4}} - \frac{1}{4}[/TEX]
[TEX]\Leftrightarrow I = -\frac{16}{25}.\frac{e^{\frac{3pi}{4}}}{4}} - \frac{4}{25}[/TEX]
 
D

djbirurn9x

Tiếp tục nào các bạn

[TEX]51/ \int\limits_{1}^{5}{[\sqrt{x + 2 \sqrt{x - 1}} + \sqrt{x - 2 \sqrt{x - 1}}]}dx[/TEX]
DONE

[TEX]52/ \int\limits_{1}^{e}{\frac{ln{\sqrt[3]{1 + ln^2x}}}{x}}dx[/TEX]
DONE

[TEX]53/ \int\limits_{0}^{3}{\frac{3x - 4}{\sqrt{4 - x}}}dx[/TEX]
DONE

[TEX]54/ \int\limits_{1}^{4}{\frac{1}{x + \sqrt{x}}}dx[/TEX]
DONE

[TEX]55/ \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{4}}{\frac{cos^3x}{\sqrt[3]{sinx}}}dx[/TEX]
DONE

[TEX]56/ \int\limits_{0}^{\frac{\pi}{2}}{\frac{cosx + sinx}{13 - 10sinx - cosx}}dx[/TEX]

[TEX]57/ \int\limits_{0}^{\frac{\pi}{2}}{\sqrt{cosx - cos^2x}}dx[/TEX]

[TEX]58/ \int\limits_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{cotgx}{\sqrt{1 - ln^2(sinx)}}}dx[/TEX]

[TEX]59/ \int\limits_{0}^{\frac{\pi}{2}}{cosxln(1 + cosx)}dx[/TEX]
DONE

[TEX]60/ \int\limits_{1}^{e}{cos^2(lnx)}dx[/TEX]
DONE
 
Last edited by a moderator:
I

iloveg8

[TEX]59/ \int\limits_{0}^{\frac{\pi}{2}}{cosxln(1 + cosx)}dx[/TEX]

Xin chém con này đầu tiên


Đặt [TEX]\left{\begin{ln(1+cosx)=u}\\{cosx.dx=dv}[/TEX] [TEX]\Rightarrow \left{\begin{du = \frac{sinx}{1+cosx}dx}\\{v=sinx}[/TEX]

[TEX]\Rightarrow I = sinx.ln(1+cosx) \mid _0^{\frac{\pi}{2}}-\int\limits_{0}^{\frac{\pi}{2}}\frac{sin^2x}{1+cosx}dx = \int\limits_{0}^{\frac{\pi}{2}}(1-cosx)dx = -1 + \frac{\pi}{2}[/TEX]

[TEX] [TEX]54/ \int\limits_{1}^{4}{\frac{1}{x + \sqrt{x}}}dx[/TEX]

Đặt[TEX] \sqrt{x} = t \Rightarrow dx = 2tdt [/TEX]

[TEX]\Rightarrow I = \int\limits_{1}^{2}{\frac{2t}{t^2 + t}}dt = 2\int\limits_{1}^{2}{\frac{1}{t+1}}dt = 2ln\frac32[/TEX]
 
Last edited by a moderator:
L

lamanhnt

[tex]\int\limits_{1}^{5}{[\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}]}dx[/tex]
[tex]=\int\limits_{1}^{5}{[\sqrt{x+2\sqrt{x-1}}dx[/tex]+[tex]\int\limits_{1}^{5}{\sqrt{x-2\sqrt{x-1}}]}dx[/tex]
đặt [tex]\sqrt{x-1}=t[/tex]=>[tex]\int\limits_{0}^{2}{(t+1)2t}dt=[/tex]
Tương tự đặt với [tex]I_2[/tex] từ đó suy ra [tex]I=I_1+I_2[/tex]
 
D

djbirurn9x

[tex]\int\limits_{1}^{5}{[\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}]}dx[/tex]
[tex]=\int\limits_{1}^{5}{[\sqrt{x+2\sqrt{x-1}}dx[/tex]+[tex]\int\limits_{1}^{5}{\sqrt{x-2\sqrt{x-1}}]}dx[/tex]
đặt [tex]\sqrt{x-1}=t[/tex]=>[tex]\int\limits_{0}^{2}{(t+1)2t}dt=[/tex]
Tương tự đặt với [tex]I_2[/tex] từ đó suy ra [tex]I=I_1+I_2[/tex]

để ý kĩ thì các biểu thức trong căn là 1 cái bình phương đó, rút căn phá trị trên đoạn là xong :D
 
K

kimsa_big

nguyên hàm.

Tìm nguyên hàm. ^^

[TEX]\int \frac{sin^{3}x}{3sin4x-sin6x-3sin2x}dx[/TEX]
 
I

iloveg8

[TEX]52/ \int\limits_{1}^{e}{\frac{ln{\sqrt[3]{1 + ln^2x}}}{x}}dx[/TEX]

[TEX]I = \int\limits_{1}^{e}ln\sqrt[3]{1+ln^2x}d(lnx) = \int\limits_{0}^{1}ln\sqrt[3]{1+ln^t}d(t)[/TEX]

Đặt [TEX]\left{\begin{ln\sqrt[3]{1+ln^2t} = u}\\{dv = dt }[/TEX] [TEX]\Rightarrow \left{\begin{du = \frac{2t}{3t^2 +3}dt}\\{v = t }[/TEX]

[TEX]\Rightarrow I = (t.ln\sqrt[3]{1+ln^2t})\mid_0^1 - \frac23\int\limits_{0}^{1}(\frac{t^2}{t^2+1})dt = ln\sqrt[3]{2} - \frac23 + \frac{\pi}{6}[/TEX]
 
D

djbirurn9x

giải tiếp đi mọi người, còn nhiều bài nữa kìa ( có cần mình lập thêm topic hóa, sử, địa hok nhỉ =.=)
 
M

maicao23

[TEX]55/ \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{4}}{\frac{cos^3x}{\sqrt[3]{sinx}}}dx[/TEX]

[TEX]= \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{4}}{\frac{cos^2x.cosx}{\sqrt[3]{sinx}}}dx[/TEX] [TEX]= \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{4}}{\frac{cos^2x}{\sqrt[3]{sinx}}}d(sinx)[/TEX]

[TEX]= \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{4}}{\frac{(1 - sin^2x)}{\sqrt[3]{sinx}}}d(sinx)[/TEX][TEX]= \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{4}}({\frac{1}{\sqrt[3]{sinx}} - {\frac{sin^2x}{\sqrt[3]{sinx}} })d(sinx)[/TEX]
 
Last edited by a moderator:
M

maicao23

[TEX]53/ I= \int\limits_{0}^{3}{\frac{3x - 4}{\sqrt{4 - x}}}dx[/TEX]

Đặt [TEX] t = \sqrt{4 - x}[/TEX] <=>[TEX] x = 4 - t^2[/TEX] <=> [TEX]dx = - 2t dt[/TEX]

Đổi cận : [TEX]x = 0[/TEX] [TEX]=>[/TEX][TEX]t = 2[/TEX] [TEX]&[/TEX] [TEX] x = 3[/TEX] [TEX]\Rightarrow [/TEX][TEX] t = 1 [/TEX]

[TEX]\Rightarrow [/TEX][TEX]I = - 2 \int\limits_{2}^{1}{\frac{3 ( 4 - t^2 ) - 4}{t}} t d t [/TEX] [TEX]\Leftrightarrow[/TEX][TEX] I = 2 \int\limits_{1}^{2}(3 ( 4 - t^2 ) - 4 ) d t[/TEX]

[TEX]\Leftrightarrow[/TEX][TEX] I = 2 \int\limits_{1}^{2}(8 - 3 t^2 ) d t[/TEX]
 
Last edited by a moderator:
P

phuongtuan204

tich phan

ailam ho minh ne
tich phan can tua 0---> pi/4 cua
sin2x.ln(tanx+1)dx
thank truoc!!!!!
 
M

maicao23

[TEX]60/ I = \int\limits_{1}^{e}{cos^2(lnx)}dx[/TEX]

Đặt [TEX] x = e^t[/TEX] \Rightarrow [TEX]dx = e^t dt [/TEX]

Đổi cận
[TEX] x = 1 \Rightarrow t = 0 & x = 2 \Rightarrow t = 1 [/TEX]

\Rightarrow [TEX] I = \int\limits_{0}^{1}{cos^2(lne^t)} e^t dt[/TEX] \Leftrightarrow [TEX] I = \int\limits_{0}^{1}{cos^2t} .e^t dt[/TEX]
\Leftrightarrow [TEX]I =\frac{1}{2} \int\limits_{0}^{1}{(1 + cos2t ) .e^t} dt [/TEX]\Leftrightarrow [TEX]I =\frac{1}{2} \int\limits_{0}^{1}{(e^t + e^t cos2t ) }dt [/TEX]

Sau đó tách ra .....................
 
Last edited by a moderator:
M

maicao23

:p:p
[TEX]58/ I = \int\limits_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{cotgx}{\sqrt{1 - ln^2(sinx)}}}dx[/TEX]
@-)@-)@-)

[TEX]I = \int\limits_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{cosx}{sinx. \sqrt{1 - ln^2(sinx)}}}dx = I = \int\limits_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{1}{ sinx .\sqrt{1 - ln^2(sinx)}}}d(sinx)[/TEX]



Tớ chỉ nghĩ dc vậy thui ,,,,các bn làm típ nhé !!!!!!!!!!!!!! :)|:)|:)|
 
M

maicao23

:p:p@-)@-)@-)

[TEX]I = \int\limits_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{cosx}{sinx. \sqrt{1 - ln^2(sinx)}}}dx => I = \int\limits_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{1}{ sinx .\sqrt{1 - ln^2(sinx)}}}d(sinx)[/TEX]



:)|:)|:)|


HI hi .bỗng nhiên tớ nghĩ ra ! làm típ nè !! Có j` sai chỉ giáo cho tớ nhé !!!:p:p

[TEX]I = \int\limits_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{1}{ \sqrt{1 - ln^2(sinx)}}\frac{1}{sinx}d(sinx) = \int\limits_{\frac{\pi}{6}}^{\frac{\pi}{2}}{\frac{1}{ \sqrt{1 - ln^2(sinx)}}d(ln(sinx))[/TEX]
Đặt [TEX] ln(sinx) = sint[/TEX] \Rightarrow [TEX] d( ln(sinx)) = cost.dt[/TEX]

Đổi cận : [TEX] ln(sinx) = \frac{pi}{6} [/TEX] \Rightarrow [TEX] t = - ln(2)[/TEX] &
[TEX]ln(sinx) = \frac{pi}{2}[/TEX] \Rightarrow [TEX] t = 0 [/TEX]

[TEX]I = \int\limits_{-ln2}^{0}{\frac{1}{ \sqrt{1 - sin^2t}}. cost .dt[/TEX][TEX] = \int\limits_{-ln2}^{0}{\frac{1}{ \sqrt{cos^2t}}. cost .dt[/TEX]

[TEX]= \int\limits_{-ln2}^{0}{\frac{1}{ cost}}. cost .dt = \int\limits_{-ln2}^{0}dt [/TEX]

Thôi,các bn làm típ nhé, tớ ko mún tính nữa, nhác wa' b-(b-( :p:p
 
Last edited by a moderator:
Top Bottom