D
djbirurn9x
Ví dụ dạng 5:
[TEX]I = \int\limits_{0}^{\pi}{x.cos^4xsin^3xdx}[/TEX]
Đặt [TEX]x = \pi - t \Rightarrow dx = -dt[/TEX]
[TEX]x = 0 \Rightarrow t = \pi; x = \pi \Rightarrow t = 0[/TEX]
[TEX]I = \int\limits_{0}^{\pi}{(\pi-t)[cos(\pi-t)]^4.[sin(\pi-t)]^3[/TEX]
[TEX]I = \int\limits_{0}^{\pi}{(\pi - t)cos^4t.sin^3tdt} = \int\limits_{0}^{\pi}{\pi{cos^4tsin^3tdt} - \int\limits_{0}^{\pi}{tcos^4tsin^3tdt}[/TEX]
[TEX]= \int\limits_{0}^{\pi}{\pi{cos^4tsin^3tdt} - \int\limits_{0}^{\pi}{xcos^4xsin^3xdx = \pi\int\limits_{0}^{\pi}{cos^4xsin^3xdx - I[/TEX]
[TEX]\Rightarrow 2I = \pi\int\limits_{0}^{\pi}{cos^4xsin^3xdx}[/TEX]
Đến đây tự tính tiếp
Ví dụ dạng 7:
[TEX]I = \int\limits_{0}^{\frac{\pi}{4}}{ln(1+tanx)dx[/TEX]
Đặt [TEX]x = \frac{\pi}{4} - t \Rightarrow dx = - dt[/TEX]
[TEX]x = 0 \Rightarrow t = \frac{\pi}{4}; x = \frac{\pi}{4} \Rightarrow t = 0[/TEX]
[TEX]I = \int\limits_{0}^{\frac{\pi}{4}}{ln[1+tan(\frac{\pi}{4} - t)]dt = \int\limits_{0}^{\frac{\pi}{4}}{ln[1 + \frac{1-tant}{1+tant}}]dt = \int\limits_{0}^{\frac{\pi}{4}}{ln[\frac{2}{1+tant}]dt[/TEX]
[TEX]\int\limits_{0}^{\frac{\pi}{4}}{[ln2 - ln(tant + 1)]]dt = ln2\int\limits_{0}^{\frac{\pi}{4}}dt - I [/TEX]
[TEX]\Rightarrow 2I = ln2\int\limits_{0}^{\frac{\pi}{4}}ldt = tln2|\begin{matrix} \frac{\pi}{4} \\ 0 \end{matrix} = \frac{\pi}{4}ln2[/TEX]
[TEX]\Rightarrow I = \frac{\pi}{8}ln2[/TEX]
Ví dụ dạng 6 post sau, h đi học
[TEX]I = \int\limits_{0}^{\pi}{x.cos^4xsin^3xdx}[/TEX]
Đặt [TEX]x = \pi - t \Rightarrow dx = -dt[/TEX]
[TEX]x = 0 \Rightarrow t = \pi; x = \pi \Rightarrow t = 0[/TEX]
[TEX]I = \int\limits_{0}^{\pi}{(\pi-t)[cos(\pi-t)]^4.[sin(\pi-t)]^3[/TEX]
[TEX]I = \int\limits_{0}^{\pi}{(\pi - t)cos^4t.sin^3tdt} = \int\limits_{0}^{\pi}{\pi{cos^4tsin^3tdt} - \int\limits_{0}^{\pi}{tcos^4tsin^3tdt}[/TEX]
[TEX]= \int\limits_{0}^{\pi}{\pi{cos^4tsin^3tdt} - \int\limits_{0}^{\pi}{xcos^4xsin^3xdx = \pi\int\limits_{0}^{\pi}{cos^4xsin^3xdx - I[/TEX]
[TEX]\Rightarrow 2I = \pi\int\limits_{0}^{\pi}{cos^4xsin^3xdx}[/TEX]
Đến đây tự tính tiếp
Ví dụ dạng 7:
[TEX]I = \int\limits_{0}^{\frac{\pi}{4}}{ln(1+tanx)dx[/TEX]
Đặt [TEX]x = \frac{\pi}{4} - t \Rightarrow dx = - dt[/TEX]
[TEX]x = 0 \Rightarrow t = \frac{\pi}{4}; x = \frac{\pi}{4} \Rightarrow t = 0[/TEX]
[TEX]I = \int\limits_{0}^{\frac{\pi}{4}}{ln[1+tan(\frac{\pi}{4} - t)]dt = \int\limits_{0}^{\frac{\pi}{4}}{ln[1 + \frac{1-tant}{1+tant}}]dt = \int\limits_{0}^{\frac{\pi}{4}}{ln[\frac{2}{1+tant}]dt[/TEX]
[TEX]\int\limits_{0}^{\frac{\pi}{4}}{[ln2 - ln(tant + 1)]]dt = ln2\int\limits_{0}^{\frac{\pi}{4}}dt - I [/TEX]
[TEX]\Rightarrow 2I = ln2\int\limits_{0}^{\frac{\pi}{4}}ldt = tln2|\begin{matrix} \frac{\pi}{4} \\ 0 \end{matrix} = \frac{\pi}{4}ln2[/TEX]
[TEX]\Rightarrow I = \frac{\pi}{8}ln2[/TEX]
Ví dụ dạng 6 post sau, h đi học
Last edited by a moderator: