P
p_trk
giải các hệ phuơng trình sau :
[tex]\left\{ \begin{array}{l} 2x+6y=\frac{x}{y} - \sqrt{x-2y} \\ \sqrt{x+\sqrt{x-2y}}=x+3y-2 \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} \sqrt{x}+ \sqrt{y} = 3 \\ \sqrt{x+5}+\sqrt{y+3} =5 \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} x^2 + y + x^3y+ xy^2+xy=-\frac{5}{4} \\ x^4+ y^2+ xy(1+2x)=-\frac{5}{4} \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} x^3 + 4y=y^3+16y \\ 1+y^2=5(1+x^2) \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} x^4 +2x^3y + x^2y^2 = 2x+9 \\ x^2+2xy=6x+6 \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} xy+x+1=7y \\ x^2y^2 + xy +1=13y^2 \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} x^3y=24 \\ 2\sqrt{x^3}+y = 6\sqrt[3]{3} \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} 2x+6y=\frac{x}{y} - \sqrt{x-2y} \\ \sqrt{x+\sqrt{x-2y}}=x+3y-2 \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} \sqrt{x}+ \sqrt{y} = 3 \\ \sqrt{x+5}+\sqrt{y+3} =5 \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} x^2 + y + x^3y+ xy^2+xy=-\frac{5}{4} \\ x^4+ y^2+ xy(1+2x)=-\frac{5}{4} \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} x^3 + 4y=y^3+16y \\ 1+y^2=5(1+x^2) \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} x^4 +2x^3y + x^2y^2 = 2x+9 \\ x^2+2xy=6x+6 \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} xy+x+1=7y \\ x^2y^2 + xy +1=13y^2 \end{array} \right.[/tex]
[tex]\left\{ \begin{array}{l} x^3y=24 \\ 2\sqrt{x^3}+y = 6\sqrt[3]{3} \end{array} \right.[/tex]
Last edited by a moderator: