trang nay bi bo lai lau rui he
minh co ung ho ne
Chuyên đề 1: TÍNH CHIA HẾT CỦA SỐ NGUYÊN
/I/ Lý thuyết:
A/ Định nghĩa: Cho a,b € Z ( b ≠ o ):
Ta nói rằng a chia hết cho b kí hiệu a b khi và chỉ khi tồn tại một số k ( k Z )sao cho a =bk
a b a = bk
Ta còn nói a là bội của b hay b là ước của a
B/Tính chất của quan hệ chia hêt :
1/phản xạ: a N và a o thì a a
2/ Phản xứng : a N và a O thì a a
3/ Bắt cầu : Nếu a b và b a thì a =b
C/ Một số định lý
1/ a m ka m
2/ a m và b m ( a b ) m
3/ (a b) m và a m b m
4/ a m và b n ab m n
5/ a m a m n N , n o
6/ a m a m
7/ a m ; m là số nguyên tố a m ( n N ; n o)
8/ a m a m ; n N , n o
9/ ab m và (a, m)=1 b m
10/ ab m và m P a m hoặc b m
11/ a m và a n và ( m,n ) =1 a m.n
12/ a m , a n , a r và ( m,n)=1, (n,r)= 1,(m,r) =1 a m.n.r
13/ Tích của n số tự nhiên liên tiếp thì chia hết cho tích .2.3...n
D/ Một số ví dụ:
Ví dụ 1: Chứng minh :
a/ n - n 12 n N
b/ n (n + 2 ).( 25n + 1) 24 n N
GIẢI
a/ n - n = ( n – 1).n.n(n+1)
Nhận xét : 12 = 3.4 và (3,4) =1
-Trong tích hai số tự nhiên liên tiếp có một số chia hết cho 2
( n- 1).n 2
n(n+ 1) 2
n - n 4 ( 1 )
Trong tích 3 số tự nhiên liên tiếp có một số là bội của 3
( n – 1).n.(n + 1) 3 (2 )
Từ (1) và (2) suy ra n - n 12 n N
b/ n.(n+2).[(n -1)+ 24n ] = n.(n+2).(n -1) +24n .n.(n+2)
Ta có 24n .n.(n+2) 24 n N
Ta cần chứng minh A= n.(n+2).(n -1) 24 n N
A= (n-1).n.(n+1).(n+2)
Ta có A 3 n N
-Trong tích 4 số tự nhiên liên tiếp có 1 số là bội của 2 ,một số là bội của 4
-Vậy tích 4 số tự nhiên liên tiếp chia hết cho 8
-Mà (3,8)= 1 nên A 24
-Do đó n.(n+2).(25n -1) 24 n N
-Nhận xét : Gọi A là biểu thức phụ thuộc vào n ( n N hoặc n Z ).
_ Để chứng minh một biểu thức A chia hết cho một số m ta thường phân tích biểu thức biểu thức
A thành nhân tử trong đó có một thừa số m.N m là hợp số ta phân tích m thành tích các thừa số
đôi một
nguyên tố cùng nhau rồi chứng minh A chia hết cho tất cả các số đó .Nên lưu ý định lý trong
k số nguyên liên tiếp bao giờ cũng tồn tại một bội sốcủa k.
-Bài tập áp dụng ví dụ 1: Chứng minh :
1/ n - 13n 6 2/ n (n - 7) - 36 5040 n N*
3/n -4n - 4n + 16n 384 với mọi n chẳn và n 4
4/ n +3n + 2n 6 5/ ( n +n -1 ) -1 2 4
6/ n +6n +8n 48 với mọi n chẳn
7/ n -10n + 9 384 với mọi n lẻ
8/ n + n - 2n 72 n Z
9/ n +6n +11n +6n 24 n N
Ví dụ 2: Chứng minh a - a 5 a Z
Cách 1: A = a - a = a.(a -1).(a +1)
- Nếu a= 5k ( k Z) thì a - a 5
- Nếu a = 5k 1 thì a - 1 5
- Nếu a = 5k 2 thì a +1 5
Trong trường hợp nào cũng có một thừa số chia hết cho 5
Nhận xét : Khi chứng minh A(n) m ta có thể xét mọi trường hợp về số dư khi chia A(n) cho m
Cách 2: a -a =a(a -1).(a +1)
=a.(a -1).(a -4+5)
=a.(a-1).(a+1).(a-2).(a+2) +5a.(a -1)
Vậy A chia hết cho 5
Bài tập ví dụ 2: Chứnh minh :
1/ a -a 7
2/ Cho n 2 và (n,6) =1 chứng minh n -1 24
3/ Cho n lẻ và ( n ,3) =1 chứnh minh : n -1 48
4/ Cho n lẻ và ( n ,5) =1 chứnh minh : n -1 80
5/ Cho a,b là số tự nhiên a b chớng minh
a/ A= a.b ( a - b ) 30
b/ A= a .b ( a - b ) 60
6/Cho n chẳn chứng tỏ 2 số n - 4n và n + 4n đều chia hết cho 16
7/ Chứng tỏ : n - n 30 n N và : n - n 240 n lẻ
8/ Chứng minh :
a/ n - n 240 n N
b/ n - n +4n 120 n N