N
nhockthongay_girlkute
Mở rộng công thức nhân và công thức hạ bậc
1.[TEX]sin4x=8cos^4x-8cos^2x+1[/TEX]2.[TEX]cos5x=16cos^5x-20cos^3x+5cosx[/TEX]
3.[TEX]cos6x=32cos^6x-48cos^4x+18cos^2x-1[/TEX]
4.[TEX]cos7x=64cos^7x-112cos^5x+56cos^3x-7cosx[/TEX]
5.[TEX]cos^4x=\frac{1}{8}cos4x+\frac{1}{2}cos2x+\frac{3}{8}[/TEX]
6.[TEX]cos^5x=\frac{1}{16}cos5x+\frac{5}{16}cos3x+\frac{5}{8}cosx[/TEX]
7.[TEX]cos^6x=\frac{1}{32}cos6x+\frac{3}{16}cos4x+\frac{15}{32}cos2x\frac{5}{16}[/TEX]
8.[TEX]sin^4x=\frac{1}{8}cos4x-\frac{1}{2}cos2x+\frac{3}{8}[/TEX]
9.[TEX]sin^5x=\frac{1}{16}sin5x-\frac{5}{16}sin3x+\frac{5}{8}sinx[/TEX]
10.[TEX]sin^6x=\frac{-1}{32}cos6x+\frac{3}{16}cos4x-\frac{15}{32}cos2x+\frac{5}{16} [/TEX]
11.[TEX]cos^{2n}x=\frac{1}{2^{2n-1}}\sum_{k=0}^{n-1} C_{2n}^kcos2(n-k}x+\frac{1}{2^{2n}}C_{2n}^k[/TEX]
12.[TEX]cos^{2n+1}x=\frac{1}{2^{2n}}\sum_{k=0}^n C_{2n+1}^k cos(2n-2k+1)x[/TEX]
13.[TEX]sin^{2n}x=\frac{(-n)^n}{2^{2n-1}}\sum_{k=0}^{n-1}(-1)^k. C_{2n}^kcos2(n-k)+\frac{1}{2^{2n}}C_{2n}^n[/TEX]
14.[TEX]sin^{2n+1}x=\frac{(-1)^n}{2^{2n}}\sum_{k=0}^n (-1)^k.C_{2n+1}^ksin(2n-2k+1)x[/TEX]