H
hthtb22: Chú ý gõ có dấu
3) Cho a+b=1. Chứng minh rằng a4+b4≥1/8
Câu 1. Chứng minh 2(a4+b4)≥(a3+b3)(a+b)1) Cho a+b≥2 . Chứng minh rằng a3+b3≤a4+b4
2) Cho a+b≥1.Chứng minh rằng a3+b3≥1/4
3) Cho a+b=1. Chứng minh rằng a4+b4≥1/8
4/ Cho a,b,c thỏa mãn 2 điều kiện sau
a>b>0
c>ab
Chứng minh rằng (c+a)/c2+a2≥(c+b)/c2+b2
Mong các bạn giải sớm giúp mình mình cần gấp thanks![]()
1) Cho a+b≥2 . Chứng minh rằng a3+b3≤a4+b4
2) Cho a+b≥1.Chứng minh rằng a3+b3≥1/4
3) Cho a+b=1. Chứng minh rằng a4+b4≥1/8
4/ Cho a,b,c thỏa mãn 2 điều kiện sau
a>b>0
c>ab
Chứng minh rằng (c+a)/c2+a2≥(c+b)/c2+b2
Mong các bạn giải sớm giúp mình mình cần gấp thanks![]()
1 Cho a,b,c,d >1 và a+b+c+d=1. Tìm maxS=a+b+c+b+c+d+c+d+a+d+b+a
2 Cho x,y thay đổi thảo mãn 0≤x≤4 và 1≤y≤5 . Tìm maxA=(4−x)(5−y)(2x+3y)
Các bạn giải nhanh giùm mình với
Áp dụng BĐT Côsi: √(xy) ≤ (x+y)/2 ta có:
√[(a+b+c).3/4] ≤ (a+b+c+3/4)/2 (Dấu = xảy ra <=> a+b+c=3/4)
√[(b+c+d).3/4] ≤ (b+c+d+3/4)/2
√[(c+d+a).3/4] ≤ (c+d+a+3/4)/2
√[(d+a+b).3/4] ≤ (d+a+b+3/4)/2
Cộng các vế được:
√(3/4) .S ≤ [3(a+b+c+d)+3]/2 = 3 <=> S ≤ 2√3
Dấu = xảy ra <=> a=b=c=d và a+b+c+d=1 và a+b+c=3/4 <=> a=b=c=d=1/4
b-(b-))
)
)
2 Cho x,y thay đổi thảo mãn 0≤x≤4 và 1≤y≤5 . Tìm maxA=(4−x)(5−y)(2x+3y)
Các bạn giải nhanh giùm mình với
1 Cho a,b>0.Chứng minh 17b^3 +3a^3>=18ab^2
2 Cho a,b>0. Chứng minh 1/a^3+a^3/b^3+b^3>=1/a+a/b+b
3 cho x,y,z >0. Chứng minh rằng 1/(x^2+yz)+1/(y^2+xz)+1/(z^2+xy)<= (x+y+z)/2xyz
hthtb22: Xem lại đề + Latex