H
hthtb22
Chuẩn hóa $x + y + z = 1$
Ta có $$\left (y + \sqrt{xz} + z\right )^2 \le \left (y + x + z\right )\left (y + z + z\right ) = (x + y + z)(y + 2z) = y + 2z$$
Nên $$VT \ge \dfrac{2x^2 + xy}{y + 2z} + \dfrac{2y^2 + yz}{z + 2x} + \dfrac{2z^2 + zx}{x + 2y} $$
Lại có $$\dfrac{2x^2 + xy}{y + 2z} + x(2x + y).(y + 2z) \ge 2\left (2x^2 + xy\right )$$ \Leftrightarrow $$\dfrac{2x^2 + xy}{y + 2z} \ge 2\left (2x^2 + xy\right ) - x(2x + y)(y + 2z) \ge 2\left (2x^2 + xy\right )$$ $$ - \dfrac{x(2x + 2y + 2z)^2}{4} = 2\left (2x^2 + xy\right ) - x$$
Từ đó, ta có :
$$VT \ge 2\left (\left (2x^2 + xy\right ) + \left (2y^2 + yz\right ) + \left (2z^2 + zx\right )\right ) - \left (x + y + z\right ) = 3\left (x^2 + y^2 + z^2\right )$$ $$ + \left (x + y + z\right )^2 - 1 \ge (x + y + z)^2 + 1 - 1 = 1$$
Suy ra ĐPCM.
Nguồn: diendantoanhoc.net
Ta có $$\left (y + \sqrt{xz} + z\right )^2 \le \left (y + x + z\right )\left (y + z + z\right ) = (x + y + z)(y + 2z) = y + 2z$$
Nên $$VT \ge \dfrac{2x^2 + xy}{y + 2z} + \dfrac{2y^2 + yz}{z + 2x} + \dfrac{2z^2 + zx}{x + 2y} $$
Lại có $$\dfrac{2x^2 + xy}{y + 2z} + x(2x + y).(y + 2z) \ge 2\left (2x^2 + xy\right )$$ \Leftrightarrow $$\dfrac{2x^2 + xy}{y + 2z} \ge 2\left (2x^2 + xy\right ) - x(2x + y)(y + 2z) \ge 2\left (2x^2 + xy\right )$$ $$ - \dfrac{x(2x + 2y + 2z)^2}{4} = 2\left (2x^2 + xy\right ) - x$$
Từ đó, ta có :
$$VT \ge 2\left (\left (2x^2 + xy\right ) + \left (2y^2 + yz\right ) + \left (2z^2 + zx\right )\right ) - \left (x + y + z\right ) = 3\left (x^2 + y^2 + z^2\right )$$ $$ + \left (x + y + z\right )^2 - 1 \ge (x + y + z)^2 + 1 - 1 = 1$$
Suy ra ĐPCM.
Nguồn: diendantoanhoc.net