H
huytrandinh
[TEX]\sqrt{(a^{2}+\frac{1}{a^{2}})(1+16)}\geq a+\frac{4}{a}[/TEX]
[TEX]=>\sum \sqrt{(a^{2}+\frac{1}{a^{2}})(1+16)}[/TEX]
[TEX]\geq \sum a+\sum \frac{4}{a}=\frac{3}{2}+\sum \frac{4}{a}[/TEX]
[TEX].\sum \frac{4}{a}\geq 4.\frac{(1+1+1)^{2}}{a+b+c}=24[/TEX]
[TEX]=>\sqrt{17}P\geq \frac{3}{2}+24=\frac{51}{2}[/TEX]
[TEX]<=>P\geq \frac{3\sqrt{17}}{2}=>MinP=\frac{3\sqrt{17}}{2}[/TEX]
[TEX]<=>a=b=c=\frac{1}{2}[/TEX]
[TEX]=>\sum \sqrt{(a^{2}+\frac{1}{a^{2}})(1+16)}[/TEX]
[TEX]\geq \sum a+\sum \frac{4}{a}=\frac{3}{2}+\sum \frac{4}{a}[/TEX]
[TEX].\sum \frac{4}{a}\geq 4.\frac{(1+1+1)^{2}}{a+b+c}=24[/TEX]
[TEX]=>\sqrt{17}P\geq \frac{3}{2}+24=\frac{51}{2}[/TEX]
[TEX]<=>P\geq \frac{3\sqrt{17}}{2}=>MinP=\frac{3\sqrt{17}}{2}[/TEX]
[TEX]<=>a=b=c=\frac{1}{2}[/TEX]