1 cái bài bđt IMO 1998 mà 1 anh bên Đức hành như thế này .
Cho a,b,c>0 và $abc=1$ . C/m
$\frac{a^3}{(1+b)(c+1)} \ge \frac{3}{4}$
Lời giải của Sonhard.
$\left( 94\,{u}^{2}+94\,{v}^{2}+94\,uv\right){a}^{10}+\left( 658\,{ u}^{3}+1169\,{u}^{2}v+282\,{v}^{3}+1075\,u{v}^{2}\right){a}^{9}+\left( 5248\,{u}^{3}v+5757\,{u}^{2}{v}^{2}+386\,{v}^{4}+2078\,{u}^{4}+2587\,u{v}^{3}\right){a}^{8}+\left( 3041\,{v}^{4}u+10710\,{u}^{2}{ v}^{3}+12711\,{u}^{4}v+3914\,{u}^{5}+302\,{v}^{5}+17070\,{u}^{3}{v}^{2 }\right){a}^{7}+\left( 2051\,u{v}^{5}+19278\,{u}^{5}v+4886\,{u}^{6}+31164\,{u}^{4}{v}^{2}+10465\,{v}^{4}{u}^{2}+25186\,{u}^{3}{v}^{3}+140\,{v}^{6}\right){a}^{6}+\left( 20313\,{v}^{4}{u}^{3}+5937\,{u}^{2}{ v}^{5}+812\,u{v}^{6}+37323\,{u}^{5}{v}^{2}+19579\,{u}^{6}v+36\,{v}^{7}+4234\,{u}^{7}+37094\,{u}^{4}{v}^{3}\right){a}^{5}+\left( 35755\,{u }^{5}{v}^{3}+4\,{v}^{8}+1960\,{u}^{2}{v}^{6}+30165\,{u}^{6}{v}^{2}+176\,u{v}^{7}+24389\,{u}^{4}{v}^{4}+13660\,{u}^{7}v+9505\,{u}^{3}{v}^{5}+2582\,{u}^{8}\right){a}^{4}+\left( 16\,{v}^{8}u+6513\,{u}^{8}v+2520\,{v}^{6}{u}^{3}+22694\,{u}^{6}{v}^{3}+18602\,{u}^{5}{v}^{4}+1094\,{u}^{9}+16416\,{u}^{7}{v}^{2}+9097\,{u}^{4}{v}^{5}+344\,{v}^{7}{u}^{2}\right){a}^{3}+\left( 24\,{v}^{8}{u}^{2}+1820\,{v}^{6}{u}^{4}+9184\,{u}^{7}{v}^{3}+2040\,{u}^{9}v+5208\,{u}^{5}{v}^{5}+5796\,{u}^{8}{v}^{2}+308\,{u}^{10}+336\,{v}^{7}{u}^{3}+8820\,{v}^{4}{u}^{6}\right){a}^{2}+\left( 1204\,{u}^{9}{v}^{2}+164\,{v}^{7}{u}^{4}+1652\,{u}^{6}{v}^{5}+2380\,{v}^{4}{u}^{7}+380\,{u}^{10}v+16\,{v}^{8}{u}^{3}+2156\,{u}^{8}{v}^{3}+700\,{u}^{5}{v}^{6}+52\,{u}^{11}\right) a+224\,{u}^{9}{v}^{3}+4\,{u}^{12}+224\,{u}^{7}{v}^{5}+112\,{u}^{6}{v}^{6}+32\,{u}^{5}{v}^{7}+4\,{v}^{8}{u}^{4}+32\,{u}^{11}v+112\,{u}^{10}{v}^{2}+280\,{u}^{8} \ge 0$