[TEX]\left{\begin{x^2+y+x^3y+xy^2+xy=\frac{-5}{4}}\\{x^4+y^2+xy(1+2x)=\frac{-5}{4}[/TEX]
[TEX]\left{ (x^2 +y)xy + x^2+y+ xy =-\frac54\\(x^2+y)^2+xy = -\frac54 [/TEX]
[TEX]Set: \ \ \left{ a= x^2 + y \\ b = xy [/TEX]
[TEX]\Rightarrow \left{ ab + a+ b = - \frac54 \\ a^2 + b = - \frac54[/TEX]
[TEX]\Rightarrow a^2 - ab - a = 0 [/TEX]
[TEX]\left{\begin{2x^2y+y^3=2x^4+x^6}\\{(x+2)\sqrt{y+1}=(x+1)^2}[/TEX]
x=0 không là nghiệm.
[TEX]x \not= 0 [/TEX]
[TEX](1) \Rightarrow (\frac{y}{x})^3 + 2. \frac{y}{x} = x^3 + 2x[/TEX](*)
Hàm [TEX]f(t) = t^3 + 2t [/TEX] đồng biến
[TEX]\Rightarrow[/TEX] (*) [TEX]\Leftrightarrow x = \frac{y}{x}[/TEX]
Thế vào (2) ta có:
[TEX](x+2)\sqrt{x^2+1} = (x+1)^2 [/TEX]
[TEX](x+2)( \sqrt{x^2+1}-2 ) = x^2 - 3 [/TEX]
[TEX]\Leftrightarrow \left[ x^2 - 3 = 0 \\ x+2 = \sqrt{x^2+1}+2 [/TEX]
. .