D
duykien94
Áp dụng BĐT Cô-si:
[TEX]\frac{1}{x + 1} = \frac{2x}{x + 1} + \frac{4y}{y + 1} + \frac{2z}{z + 1} \geq 8.\sqrt[8]{\frac{x^2.y^4.z^2}{(x + 1)^2.(y + 1)^4.(z + 1)^2}}[/TEX]
[TEX]\frac{1}{y + 1} = \frac{3x}{x + 1} + \frac{3y}{y + 1} + \frac{2z}{z + 1} \geq 8.\sqrt[8]{\frac{x^3.y^3.z^2}{(x + 1)^3.(y + 1)^3.(z + 1)^2}}[/TEX]
[TEX]\frac{1}{z + 1} = \frac{3x}{x + 1} + \frac{4y}{y + 1} + \frac{z}{z + 1} \geq 8.\sqrt[8]{\frac{x^3.y^4.z^2}{(x + 1)^3.(y + 1)^4.(z + 1)}}[/TEX]
[TEX]\Rightarrow \frac{1}{(x + 1)^3.(y + 1)^4.(z + 1)^2} \geq 8^9.\sqrt[8]{\frac{x^{24}.y^{32}.z^{16}}{(x + 1)^{24}.(y + 1)^{32}.(z + 1)^{16}}}[/TEX]
[TEX]\Leftrightarrow 8^9.x^3.y^4.z^2 \leq 1[/TEX]
Dấu bằng xảy ra [TEX]\Leftrightarrow[/TEX] [TEX]\frac{x}{x + 1} = \frac{y}{y + 1} = \frac{z}{z + 1}[/TEX]
[TEX]\Leftrightarrow[/TEX] x = y = z = [TEX]\frac{1}{8}[/TEX]
Xong rồi đấy