A
angleofdarkness
Bài 5
$x+\sqrt{x^2+16}=\dfrac{40}{\sqrt{x^2+16}}$
$\Longrightarrow (\dfrac{40}{\sqrt{x^2+16}}-x)^2=x^2+16$
$\Longleftrightarrow \dfrac{1600}{x^2+16}+x^2-\dfrac{80x}{\sqrt{x^2+16}}=x^2+16$
$\Longleftrightarrow \dfrac{-100x^2}{x^2+16}-\dfrac{80x}{\sqrt{x^2+16}}+84=0$
$\Longrightarrow \left[\begin{matrix}\dfrac{x}{\sqrt{x^2+16}}=\dfrac{3}{5} \\ \dfrac{x}{\sqrt{x^2+16}}=-\dfrac{7}{5}(L)\end{matrix}\right.$
$\Longrightarrow 5x=3\sqrt{x^2+16}$
$\Longleftrightarrow \left\{\begin{matrix}x \ge 0\\25x^2=9(x^2+16) \end{matrix}\right. \Longrightarrow x=3$
Cách 2:
Pt \Leftrightarrow $x\sqrt{x^2+16}+x^2+16=40$
\Leftrightarrow $x\sqrt{x^2+16}=24-x^2$
\Leftrightarrow $x^2(x^2+16)=(24-x^2)^2$
\Leftrightarrow $64x^2=576$ \Leftrightarrow x = -3; 3.
Thử lại chọn x = 3.