A
aklpt12345
cho
[TEX]x^2[/TEX] + [TEX]y^2[/TEX] + 2x + 4y + 1 \leq 0
tìm max min của P = 2x + y
>>>>>>>>>>>>>>>>>>.[TEX]x^2[/TEX] + [TEX]y^2[/TEX] + 2x + 4y + 1 +4 \leq 4
>>>>>>>>>>>>>>>>>[TEX](x+1)^2[/TEX]+[TEX](y+2)^2[/TEX] \leq 4 (1)
[TEX][2(x+1)+(y+2)]^2[/TEX] \leq ([TEX]2^2[/TEX] + [TEX]1 ^2[/TEX])([TEX](x+1)^2[/TEX]+ [TEX](y+2)^2[/TEX]) (bunhiaxkopki ) \leq 5 X 4 = 20 có từ(1)
>>>>>>>>>2x+y+4 \leq 20
.>>>>>>>> 2x+ y \leq [TEX]\sqrt[2]{20}[/TEX] - 4
>>>>>>>>> - [TEX]\sqrt[2]{20}[/TEX] -4 \leq [TEX]2x+y[/TEX] \leq [TEX]\sqrt[2]{20}[/TEX] -4
[TEX]x^2[/TEX] + [TEX]y^2[/TEX] + 2x + 4y + 1 \leq 0
tìm max min của P = 2x + y
>>>>>>>>>>>>>>>>>>.[TEX]x^2[/TEX] + [TEX]y^2[/TEX] + 2x + 4y + 1 +4 \leq 4
>>>>>>>>>>>>>>>>>[TEX](x+1)^2[/TEX]+[TEX](y+2)^2[/TEX] \leq 4 (1)
[TEX][2(x+1)+(y+2)]^2[/TEX] \leq ([TEX]2^2[/TEX] + [TEX]1 ^2[/TEX])([TEX](x+1)^2[/TEX]+ [TEX](y+2)^2[/TEX]) (bunhiaxkopki ) \leq 5 X 4 = 20 có từ(1)
>>>>>>>>>2x+y+4 \leq 20
.>>>>>>>> 2x+ y \leq [TEX]\sqrt[2]{20}[/TEX] - 4
>>>>>>>>> - [TEX]\sqrt[2]{20}[/TEX] -4 \leq [TEX]2x+y[/TEX] \leq [TEX]\sqrt[2]{20}[/TEX] -4
Last edited by a moderator: