0
0915549009
[TEX]\sum_{cyc}\frac {a}{4b^2+1} = \sum_{cyc}\frac {a^3}{4a^2b^2+a^2} \geq \frac {(\sum a\sqrt {a})^2}{\sum 4a^2b^2+\sum a^2}[/TEX]Cho a,b,c>=0,a+b+c=1.C/m:
[TEX]\sum_{cyc}\frac {a}{4b^2+1}\ge (\sum_{cyc}a\sqrt {a})^2[/TEX]
[TEX]\sum 4a^2b^2+\sum a^2\leq 1 \Leftrightarrow \sum 4a^2b^2+\sum a^2 \leq (a+b+c)^2 \Leftrightarrow \sum ab(1-4ab) \geq 0 \Rightarrow dpcm \Rightarrow Sai. oy[/TEX] ((
Last edited by a moderator: