K
kid_1412_kudo_142120
ta có[TEX]a,b,c[/TEX] dương thỏa mãn [TEX]a+b+c=3[/TEX]. Chứng minh rằng:
[TEX]a^3+b^3+c^3 \ge a^2+b^2+c^2(1)[/TEX]
[TEX]a^3+a\geq2a^2[/TEX](cosi)
\Rightarrow[TEX]a^3+b^3+c^3\geq2(a^2+b^2+c^2)-a+b+c=2(a^2+b^2+c^2)-3[/TEX]
cần cm [TEX]a^2+b^2+c^2\geq3[/TEX]
ta có bdt quen thuộc [TEX]3(a^2+b^2+c^2)\geq(a+b+c)^2=9[/TEX]\Rightarrowdpcm
ta có [TEX]a+1\geq2\sqrt{a}[/TEX]\Rightarrow[TEX]\frac{a}{a+1}\leq\frac{\sqrt{a}}{2}[/TEX][TEX]a,b,c[/TEX] không âm thoả mãn [TEX]a+b+c=3[/TEX]. tìm max:
[ [TEX] \frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1} [/TEX]
\Rightarrow [TEX]\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\leq\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\leq\frac{\sqrt{3(a+b+c}}{2}=\frac{3}{2}[/TEX]
[TEX]a,b,c>0[/TEX] thoả mãn [TEX]a+b+c=3 [/TEX]tìm min:
[TEX]\frac{a+3}{(a+1)^2}+\frac{b+3}{(b+1)^2}+\frac{c+3}{(c+1)^2}=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{2}{(a+1)^2}+\frac{2}{(b+1)^2}+\frac{2}{(c+1)^2}[/TEX]\geq3 ( áp dung Svacso thui )[TEX]\frac{a+3}{(a+1)^2}+\frac{b+3}{(b+1)^2}+\frac{c+3}{(c+1)^2}[/TEX]
dau = xay ra khi va chi khi a=b=c=1
áp dụng bất đẳng thức mincopsky là ra [TEX]\sqrt{10}[/TEX][TEX]a,b,c[/TEX] dương thỏa mãn [TEX]a+b+c=1[/TEX], Tìm min :
[TEX]\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}[/TEX]
ok
[TEX]\frac{a+3}{(a+1)^2}+\frac{b+3}{(b+1)^2}+\frac{c+3}{(c+1)^2}=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{2}{(a+1)^2}+\frac{2}{(b+1)^2}+\frac{2}{(c+1)^2}\geq \frac{9}{a+b+c+1+1+1}+2(\frac{(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1})^2}{(3}[/TEX]\geq[TEX] \frac{9}{6}+ 2\frac{ (\frac{9}{6})^2}{3}[/TEX]=3
dau = xay ra khi va chi khi a=b=c=1
[TEX]a,b,c[/TEX] dương thỏa mãn [TEX]a+b+c=1[/TEX], Tìm min :
[TEX]\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}[/TEX]
[TEX]\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\geq\sqrt{(a+b+c)^2+(1+1+1)^2}=\sqrt{10}[/TEX]
Last edited by a moderator: