K
klove
1.[TEX]\int_{0}^{1}\frac{x^2-1}{1+x^4}dx[/TEX]
2.[TEX]\int_{0}^{\pi/2}\frac{cosxsinx}{(1+sin^4x)(1+cos^4x)}dx>\pi/12[/TEX]
đây là đề thi đh thầy giáo em cho (chưa làm được)
hướng dẫn bài 1
[TEX]\frac{x^2-1}{1+X^4}=\frac{x^2-1}{(1+x^2)^2-2x^2}[/TEX]
[TEX]*\int_0^1\frac{x^2-1}{x^4+1}dx=\int_0^1\frac{x^2-1}{(x^2+1)^2-2x^2}dx=\int_0^1[\frac{\frac{\sqrt2}{2}x-\frac{1}{2}}{x^2-\sqrt2x+1}-\frac{\frac{\sqrt2}{2}x+\frac{1}{2}}{x^2+\sqrt2x+1}]dx=\frac{1}{2\sqrt2}ln\frac{x^2-\sqrt2x+1}{x^2+\sqrt2x+1}\|_0^1=\frac{1}{\sqrt2}ln(\sqrt2-1)[/TEX]
[TEX]*x=tgt \ \ la \ \ dep \ \ \ nhat!!!![/TEX]
[TEX]2/\forall{x\in{[0,\frac{\pi}{2}]\Rightarrow{0<(1+sin^4x)(1+cos^4x)\le{(1+sin^2x)(1+cos^2x)=2+sin^2xcos^2x<{2+\frac{(sin^2x+cos^2x)^2}{2}=\frac{3}{2}\ \ \ (sinxcosx\ge0)[/TEX]
[TEX]\Rightarrow{\int_{0}^{\pi/2}\frac{cosxsinx}{(1+sin^4x)(1+cos^4x)}dx>\frac{1}{3}\int_{0}^{\pi/2}sin2xdx=-\frac{1}{6}cos2x\|_0^{\frac{\pi}{2}}=\frac{1}{3}= \frac{4}{12}> \frac{\pi}{12}[/TEX]
Last edited by a moderator: