[tex]I_1=\int_{\frac{1}{\sqrt3}}^{1}\frac{lnx} {x^2sqrt{x^2+1}}dx[/tex]
[tex]I_2=\int_{\frac{1}{\sqrt3}}^{1}\frac{lnx} {x^2(x^2+1)sqrt{x^2+1}}dx[/tex]
[TEX] \ \ \ \ \ \ \ \ \ \ \\ \ \ \\ \\ \\ \\ \\ \\ \ \ \ \ \ \ \ \ [/TEX]
Giúp em bài này:
Tinh [TEX]\int_{0}^{\frac{1}{2}}\frac{x^2}{(1-x^2)^2}dx[/TEX]
[TEX]I=\int \frac{x^2}{(1-x^2)^2}dx=\int x.d(-\frac{1}{2(x^2-1)})=\frac{x}{2(1-x^2)}+\frac{1}{2}\int \frac{1}{x^2-1}dx=\frac{x}{2(1-x^2)}+\frac{1}{4}ln\|\frac{x-1}{x+1}\|+C[/TEX]
[TEX]I=\int \frac{x^8}{(x^4-1)^2}dx[/TEX]
Không dùng lượng giác (số không đẹp). Xin cảm ơn
[TEX]I=\int x^5.d(-\frac{1}{4(x^4-1)})=\frac{x^5}{4(1-x^4)}+\frac{5}{4}\int (1+\frac{1}{2(x^2-1)}-\frac{1}{2(x^2+1)})dx=\frac{x^5}{4(1-x^4)}+\frac{5x}{4}+\frac{5}{16}ln\|\frac{x-1}{x+1}\|-\frac{5}{8}arctgx+C[/TEX]
Tìm nguyên hàm của [TEX]I=\int_{}^{}\frac{1}{x^9-7x^4}dx[/TEX]
Chả biết nó giống dạng gì mà làm chả ra
[TEX]7I=\int\frac{7}{x^4(x^5-7)}dx=\int(\frac{x}{x^5-7}-\frac{1}{x^4})dx=J+\frac{1}{3x^3}[/TEX]
[TEX]Dat\ a^5=7[/TEX]
[TEX]5a^3J=\int[\frac{1}{x-a}-\frac{x^3+2ax^2+3a^2x-a^3}{x^4+ax^3+a^2x^2+a^3x+a^4}]dx[/TEX]
[TEX]=\int[\frac{1}{x-a}-\frac{1}{4}[\frac{4x^3+3ax^2+2a^2x+a^3}{x^4+ax^3+a^2x^2+a^3x+a^4}+\sqrt5(\frac{2x-\frac{\sqrt5-1}{2}a}{x^2-\frac{\sqrt5-1}{2}ax+a^2}-\frac{2x+\frac{\sqrt5+1}{2}a}{x^2+\frac{\sqrt5+1}{2}ax+a^2})+\frac{2\sqrt5}{(x-\frac{\sqrt5-1}{4}a)^2+\frac{5+\sqrt5}{8}a^2}-\frac{2\sqrt5}{(x+\frac{\sqrt5+1}{4}a)^2+\frac{5+\sqrt5}{8}a^2}]dx[/TEX]
[TEX]\Rightarrow{I=\frac{1}{21x^3}+\frac{1}{35a^3}ln\|x-a\|+\frac{1}{140a^3}[(\sqrt5-1)ln(x^2+\frac{\sqrt5+1}{2}ax+a^2)-(\sqrt5+1)ln(x^2-\frac{\sqrt5-1}{2}ax+a^2)+[/TEX]
[TEX]+2\sqrt{10+2\sqrt5}\ arctg\frac{4x+( \sqrt5+1)a}{\sqrt{10-2\sqrt5}}-2\sqrt{10-2\sqrt5}\ arctg\frac{4x-(\sqrt5-1)a}{\sqrt{10+2\sqrt5}}]+C[/TEX]