V
vivietnam
Cách 1:[TEX]\int_{2}^{3}\frac{dx}{(x^2 -2).\sqrt{x^2 +3}}[/TEX]
đặt [TEX]x^2+3=(x+t)^2 (t>0) \Rightarrow x=\frac{3-t^2}{2t}[/TEX]
\Rightarrow[TEX]dx=\frac{-3-t^2}{2t^2}dt[/TEX]
\Rightarrow[TEX]I=\int \frac{\frac{-3-t^2}{2t^2}}{\frac{t^4-14t^2+9}{4t^2} (\frac{t^2+3}{2t})}dt=\frac{-2.d(t^2)}{t^4-14t^2+9}=\frac{-1}{\sqrt{40}}.ln|\frac{t^2-7-\sqrt{40}}{t^2-7+\sqrt{40}}|[/TEX]
Cách 2;
đặt [TEX]x^2+3=x^2t^2\Rightarrow x^2=\frac{3}{t^2-1}[/TEX]
\Rightarrow[TEX]xdx=\frac{-3tdt}{(t^2-)^2}[/TEX]
chia cả 2 vế cho [TEX]x^2t[/TEX] ta có
[TEX]\frac{xdx}{\sqrt{x^2+3}}=\frac{-dt}{t^2-1}[/TEX]
\Rightarrow[TEX]I=\int \frac{dt}{2(t^2-\frac{5}{2})}=\frac{1}{2.\sqrt{10}}.ln|(\frac{t-\frac{\sqrt{5}}{\sqrt{2}}}{\frac{t+\frac{\sqrt{5}}{\sqrt{2}}}})| [/TEX]
Last edited by a moderator: