N
ngomaithuy93
Đặt [TEX]t=\frac{1}{x}[/TEX]. Khi [TEX]x\to+\infty[/TEX] thì [TEX]t\to0[/TEX]Tính gioi han:
[TEX]\lim_{x\to+\infty}{(sin{\sqrt{x+1}}-sin{\sqrt{x}})[/TEX].
[TEX] \lim_{t\to0}{(sin.\sqrt{\frac{1}{t}+1}-sin.\sqrt{\frac{1}{t}})[/TEX]
[TEX] = \lim_{t\to0}(\frac{sin.\sqrt{\frac{1}{t}+1}}{\sqrt{\frac{1}{t}+1}}-\frac{sin.\sqrt{\frac{1}{t}}}{.\sqrt{\frac{1}{t}}})[/TEX]
[TEX] = \lim_{t\to0}(\sqrt{\frac{1}{t}+1}-\sqrt{\frac{1}{t}})[/TEX]
[TEX] = \lim_{t\to0}\frac{\sqrt{t+1}-1}{\sqrt{t}}[/TEX]