D
duynhan1
Bai 2:
Cho a,b,c>0 thoa man a^2+b^2+c^2=3.Tim Min:
[TEX]S=\sum_{cyc}\frac {a^5}{b^3+c^3}+a^4+b^4+c^4[/TEX]
[TEX] a \geq b \geq c[/TEX]
[TEX]\Rightarrow \frac{1}{b^3+c^3} \ge \frac{1}{c^3+a^3} \ge \frac{1}{a^3+b^3} [/TEX]
[TEX]S \ge \frac13(a^2+b^2+c^2)\sum ( \frac{a^3}{b^3 +c^3} ) + \frac13(a^2 + b^2 + c^2 )^2 \ge \frac32 + 3 = \frac{9}{2}[/TEX]