[Toán 10]Bdt

Status
Không mở trả lời sau này.
N

namtuocvva18

1,Cho a,b,c dương. Chứng minh:
[TEX]\sqrt[3]{\frac{a^2+bc}{b^2+c^2}}+\sqrt[3]{\frac{b^2+ca}{c^2+a^2}}+\sqrt[3]{\frac{c^2+ab}{a^2+b^2}}\geq \frac{9\sqrt[3]{abc}}{a+b+c}[/TEX].

2, Cho a,b,c là độ dài ba cạnh tam giác. Chứng minh:
[TEX]\frac{a}{3a-b+c}+\frac{b}{3b-c+a}+\frac{c}{3c-a+b}\geq 1[/TEX].
 
N

namtuocvva18

Cho x,y,z dương và [TEX]xyz=1[/TEX]. Chứng minh:
[TEX]\frac{x^2}{x+y+y^3z}+\frac{y^2}{y+z+z^3x}+\frac{z^2}{z+x+x^3y}\geq 1[/TEX].
 
Q

quyenuy0241

Cho a,b,c dương. Chứng minh:
[TEX]\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{(a+b)(b+c)(c+a)}\geq 2[/TEX].

[tex](a+b)(b+c)(c+a) \le \frac{8(a+b+c)^3}{27}[/tex]

[tex]By- Hoder-> (a+b+c)^3 \le 9(a^3+b^3+c^3)[/tex]

[tex]\Rightarrow (a+b)(b+c)(c+a) \le \frac{8(a^3+b^3+c^3)}{3}[/tex]

[tex]\frac{a^3+b^3+c^3}{3abc}+\frac{8abc}{(a+b)(b+c)(c+a)}\geq \frac{a^3+b^3+c^3}{3abc}+\frac{3abc}{a^3+b^3+c^3} \ge 2 (by-AM-GM)[/tex].
 
Q

quyenuy0241

2,Cho a,b,c la do dai ba canh tam giac. Chung minh:

[TEX]9(a^2+b^2+c^2)(ab+bc+ca)\geq (a+b+c)^4[/TEX].


Chuẩn hoá [tex]a+b+c=1 \Rightarrow ab+bc+ac \le \frac{1}{3}[/tex]

do a,b,c là 3 cạch tam giác : [tex]2(ab+bc+ac) > a^2+b^2+c^2 \Leftrightarrow ab+bc+ac \ge \frac{1}{6}(a+b+c)^2 =\frac{1}{6}[/tex]

[tex]BDT \Leftrightarrow 9(1-2(ab+bc+ac))(ab+bc+ac) \le 1 \Leftrightarrow-18(ab+bc+ac)^2+9(ab+bc+ac) \le 1 \Leftrightarrow\frac{1}{6}\le ab+bc+ac \le \frac{1}{3}[/tex]Luôn đúng !
 
Last edited by a moderator:
D

duynhan1

Cho x,y,z dương và [TEX]xyz=1[/TEX]. Chứng minh:
[TEX]A=\frac{x^2}{x+y+y^3z}+\frac{y^2}{y+z+z^3x}+\frac{z^2}{z+x+x^3y}\geq 1[/TEX].
[TEX]A= \frac{x^4}{x^3+x^2y+y^2x}+\frac{y^4}{y^3+y^2z+z^2y}+\frac{z^4}{z^3+xz^2+x^2z}[/TEX]
[TEX]A \geq \frac{(x^2+ y^2 +z^2)^2}{(x+y+z)(x^2+y^2+z^2)} \geq \frac{x+y+z}{3} [/TEX]
[TEX]A \geq 1 [/TEX]
 
Last edited by a moderator:
D

duynhan1

2,Cho a,b,c la do dai ba canh tam giac. Chung minh:

[TEX]9(a^2+b^2+c^2)(ab+bc+ca)\geq (a+b+c)^4 (1)[/TEX].

[TEX] x=a^2+b^2+c^2; y = ab+bc+ca \Rightarrow x \geq y[/TEX]
[TEX](1) \Leftrightarrow 9xy \geq (x+2y)^2[/TEX]
[TEX]\Leftrightarrow (x-y)(x-4y) \leq 0[/TEX]
[TEX]x-4y \leq 0 [/TEX]
[TEX]a(a-b-c) + b(b-a-c) +c (c-a-b) -ab-bc-ca \leq 0[/TEX] (luôn đúng do [TEX]VT <0[/TEX])
 
Last edited by a moderator:
R

rua_it

Cho a,b,c dương và [TEX]a^4+b^4+c^4=3[/TEX]. Chứng minh:
[TEX]\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\leq 1[/TEX].
[tex]a^2+b^2 \geq 2.ab(AM-GM)[/tex]

[tex]\Rightarrow \frac{1}{4-ab} \leq \frac{1}{4-\frac{a^2+b^2}{2}}=\frac{2}{8-a^2-b^2}[/tex]

[tex]\Rightarrow LHS:=\sum_{cyclic} \frac{1}{4-ab} \leq \sum_{cyclic} \frac{2}{8-(a^2+b^2)}[/tex]

[tex]Dat: \left{\begin{x=(b^2+c^2)^2}\\{y=(c^2+a^2)^2}\\{z=(a^2+b^2)^2}[/tex]

Viết lại [tex]\sum_{cyclic} \frac{2}{8-(a^2+b^2)}= \frac{2}{8-\sqrt{x}}+\frac{2}{8-\sqrt{y}}+\frac{2}{8-\sqrt{z}}[/tex]

Cần chứng minh: [tex] \sum_{cyclic} \frac{2}{8-\sqrt{x}} \leq 1[/tex]

[tex]\Leftrightarrow \sum_{cyc} \frac{1}{8-\sqrt{x}} \leq \frac{1}{2}[/tex]

[tex]Cauchy-Schwarz \Rightarrow x+y+z=(b^2+c^2)^2+(c^2+a^2)^2+(a^2+b^2)^2 \leq 4.\sum_{cyc} a^4=12[/tex]

[tex]\Rightarrow \sum_{cyc} \frac{1}{8-\sqrt{x}} \leq \sum_{cyc} \frac{a}{144}+\frac{15}{36}=\frac{a+b+c}{144}+ \frac{15}{36} \leq \frac{1}{12}+\frac{15}{36}=RHS[/tex]
 
N

namtuocvva18

Cho a,b,c dương. Chứng minh:
[TEX]\frac{a^3+b^3+c^3}{2abc}\geq \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}[/TEX].
 
N

namtuocvva18

Cho a,b,c dương và [TEX]abc=8[/TEX]. Chứng minh:
[TEX]\frac{a^2}{\sqrt{(a^3+1)(b^3+1)}}+\frac{b^2}{\sqrt{(b^3+1)(c^3+1)}}+\frac{c^2}{\sqrt{(c^3+1)(a^3+1)}} \geq \frac{4}{3}[/TEX].
 
N

namtuocvva18

Cho a,b,c dương và [TEX]a^3c+b^3a+c^3b=abc[/TEX]. Chứng minh:
[TEX] \frac{b}{a^2+ab}+\frac{c}{b^2+bc}+\frac{a}{c^2+ca}\geq \frac{9}{2}[/TEX].
 
N

namtuocvva18

Cho a,b,c dương và [TEX]a^2+b^2+c^2\geq 1[/TEX]. Chứng minh:
[TEX]\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b} \geq \frac{\sqrt{3}}{2}[/TEX].
 
N

namtuocvva18

Thtt

Cho x,y,z dương. Chứng minh:
[TEX]16xyz(x+y+z)\leq 3\sqrt[3]{(x+y)^4(y+z)^4(z+x)^4}[/TEX].
 
Q

quyenuy0241

Cho a,b,c dương và [TEX]a^3c+b^3a+c^3b=abc(1)[/TEX]. Chứng minh:
[TEX] \frac{b}{a^2+ab}+\frac{c}{b^2+bc}+\frac{a}{c^2+ca}\geq \frac{9}{2}[/TEX].
[tex](1) \Rightarrow1= \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a} \ge a+b+c \Rightarrow a+b+c \le 1[/tex]

[tex]RHL=\frac{1}{\frac{a^2}{b}+a}+\frac{1}{\frac{c^2}{a}+c}+\frac{1}{\frac{b^2}{c}+b} \ge \frac{1}{ \frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c}= \frac{9}{1+a+b+c} \ge \frac{9}{2}[/tex]
 
R

rua_it

Cho a,b,c dương và [TEX]abc=8[/TEX]. Chứng minh:
[TEX]\frac{a^2}{\sqrt{(a^3+1)(b^3+1)}}+\frac{b^2}{\sqrt{(b^3+1)(c^3+1)}}+\frac{c^2}{\sqrt{(c^3+1)(a^3+1)}} \geq \frac{4}{3}[/TEX].
Đề thì sai.:(

Có lẽ đề như thế này:

gif.latex
 
Last edited by a moderator:
N

namtuocvva18

Cho a,b,c dương. Chứng minh:
[TEX]\sqrt{\frac{a^3+abc}{b+c}}+\sqrt{\frac{b^3+abc}{c+a}}+\sqrt{\frac{c^3+abc}{a+b}}\geq a+b+c[/TEX].
 
R

rua_it

[tex]Note:a^3+1 =(a^3+1).1 \leq_{Am-Gm} \frac{a^3+2}{2}[/tex]

[tex]\Rightarrow \sum_{cyclic} \frac{a^2}{\sqrt{(a^3+1)(b^3+1)}} \geq \sum_{cyclic} \frac{a^2}{\frac{a^3+2}{2}.\frac{b^3+2}{2}}[/tex]

[tex]=\sum_{cyclic} \frac{4a^2}{(a^3+2)(b^3+2)}[/tex]

Cần chứng minh [tex] \sum_{cyclic} \frac{4a^}{(a^3+2)(b^3+2)} \geq \frac{4}{3}[/tex]

[tex]\Leftrightarrow \sum_{cyclic} \frac{a^2}{(a^2+2)(b^2+2)} \geq \frac{1}{3}[/tex]

[tex]\Leftrightarrow a^2.(c^3+2)+b^2.(a^3+2)+c^2(b^3+2) \geq \frac{1}{3}.\prod (a^3+2)[/tex]

Bổ tung ra kết hợp giả thiết ta được đpcm.
 
Last edited by a moderator:
Status
Không mở trả lời sau này.
Top Bottom