N
nokonyo
[TEX]P=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}[/TEX]a,b,c >0
a+b+c=1
Cm:[TEX]\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq3({a^2}+{b^2}+{c^2})[/TEX]
[TEX]P^2=\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}+\frac{2a^2b}{c}+\frac{2b^2c}{a}+\frac{2c^2a}{b}[/TEX]
Ta có
[TEX]\frac{a^4}{b^2}+2ab+\frac{b^4}{c^2}+2bc+\frac{c^4}{a^2}+2ca \geq 3(a^2+b^2+c^2)[/TEX]
Ta chỉ cần CM
[TEX]\frac{2a^2b}{c}+\frac{2b^2c}{a}+\frac{2c^2a}{b} \geq 2(ab+bc+ca)[/TEX]
[TEX]\frac{a^2b}{c}+bc+\frac{b^2c}{a}+ca+\frac{c^2a}{b}+ab \geq 2(ab+bc+ca)[/TEX]