N
nhockthongay_girlkute
prove that if x,y,z >0 and [TEX]xyz=x+y+z+2[/TEX] then[TEX] 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}) \leq x+y+z+6 [/TEX]
For non-negative real number a,b,c
Prove that :
[TEX]\sum \sqrt{ \frac{a(b+c)}{a^2+bc}} \geq 2 [/TEX]
cho a,b>0 thỏa mãn (a+1)(b+1)=4 cmr:
[tex]a^2+b^2+6\geq4(a+b)[/tex]
[TEX]a,b,c>0 ,, a+b+c=3[/TEX]CMR:
[TEX]3abc+(a^2b^2+b^2c^2+c^2a^2) \ge abc(a^2+b^2+c^2)+3a^2b^2c^2 [/TEX]
Let tri ABC with area is S.prove that :
[TEX]\sum_{cyc}ab \ge 4\sqrt{3} S [/TEX]
Let ABC with area is S.prove that :
[TEX] \sum_{cyc}a^2 \ge 4\sqrt{3}S+\sum_{cyc}(a-b)^2[/TEX]
Cho a,b,c duong: Chung minh:
[TEX]\sqrt{\frac{2a}{a+b}}+\sqrt{\frac{2b}{b+c}}+\sqrt{\frac{2c}{c+a}}\leq 3[/TEX].
For non-negative real number a,b,c
Prove that :
[TEX]\sum \sqrt{ \frac{a(b+c)}{a^2+bc}} \geq 2 [/TEX]