H
huytrandinh
bài 2 ta có
x4+x2+1=(x2+x+1)(x2−x+1)
t=x2+1x(∣t∣≤21)
=>bpt<=>(t1−1)(t+1)≥1−t−t=>−1≤t≤1
<=>1−t(tt+1−1)≥−t
=>1≥t>0
<=>t−1(t+1−t)≥−t.t
VT≥0,VP<0=>0≤t≤1=>0<t≤21
.t>0<=>x>0
.x2+1x≤21<=>(x−1)2≥0
=>S=(0,+∞)
x4+x2+1=(x2+x+1)(x2−x+1)
t=x2+1x(∣t∣≤21)
=>bpt<=>(t1−1)(t+1)≥1−t−t=>−1≤t≤1
<=>1−t(tt+1−1)≥−t
=>1≥t>0
<=>t−1(t+1−t)≥−t.t
VT≥0,VP<0=>0≤t≤1=>0<t≤21
.t>0<=>x>0
.x2+1x≤21<=>(x−1)2≥0
=>S=(0,+∞)