Ôn Thi Đại Học 2013.

V

vivietnam

Bài 19:Tìm nguyên hàm I=dxtan6x I=\displaystyle\int \dfrac{dx}{\tan^6x}


d(tanx)tan6x(tan2x+1) \displaystyle\int \dfrac{d(\tan x)}{\tan^6x(\tan^2x+1)}
=dtt6(t2+1)=\displaystyle \int \dfrac{dt}{t^6(t^2+1)}
=dtt4(t2.(t2+1))=\displaystyle \int \dfrac{dt}{t^4(t^2.(t^2+1))}
=1t4(1t21t2+1)dt=\displaystyle \int \dfrac{1}{t^4}(\dfrac{1}{t^2}-\dfrac{1}{t^2+1})dt
=dtt61t2.t2.(t2+1)dt=\displaystyle \int \dfrac{dt}{t^6}-\displaystyle \int \dfrac{1}{t^2.t^2.(t^2+1)}dt
=t6dtt4dt+t2dtdtt2+1=\displaystyle \int t^{-6}dt-\displaystyle \int t^{-4}dt+\displaystyle \int t^{-2}dt-\displaystyle \int\dfrac{dt}{t^2+1}
=t77t55+t33arctant+C=\dfrac{t^{-7}}{-7}-\dfrac{t^{-5}}{-5}+\dfrac{t^{-3}}{-3}-arctant+C
 
Last edited by a moderator:
V

vivietnam



Bài 28:Tìm nguyên hàm I=(4x22x1)e2xdx I=\displaystyle \int(4x^2-2x-1)e^{2x}dx
I=4x22x12d(e2x) I=\displaystyle \int \dfrac{4x^2-2x-1}{2}d(e^2x)
I=(4x22x1)e2x24x12d(e2x) I=\dfrac{(4x^2-2x-1)e^{2x}}{2}-\displaystyle \int\dfrac{4x-1}{2}d(e^2x)
I=(4x22x1)e2x2(4x1)e2x2+2e2xdxI=\dfrac{(4x^2-2x-1)e^{2x}}{2}-\dfrac{(4x-1)e^{2x}}{2}+\displaystyle \int 2e^{2x}dx
I=(4x22x1)e2x2(4x1)e2x2+e2x+CI= \dfrac{(4x^2-2x-1)e^{2x}}{2}-\dfrac{(4x-1)e^{2x}}{2}+e^{2x}+C
 
Last edited by a moderator:
S

sky_fly_s2


Bài 26:Tìm nguyên hàm I=cosx7+cos2xdx I=\displaystyle \int \dfrac{\cos x}{\sqrt{7+\cos 2x}}dx


I=182sin2xd(sinx)\Leftrightarrow I=\displaystyle \int \dfrac{1}{\sqrt{8-2\sin^2x}}d(\sin x)
Đặt sinx=2sintd(sinx)=2costdt\sin x=2\sin t \Rightarrow d(sinx)=2\cos tdt
I=2cost88sin2tdt\Leftrightarrow I=\displaystyle \int \dfrac{2\cos t}{\sqrt{8-8\sin^2t}}dt
I=2cost22costdt\Leftrightarrow I=\displaystyle \int \dfrac{2\cos t}{2\sqrt{2}\cos t}dt
I=t2+C\Leftrightarrow I = \dfrac{t}{\sqrt{2}}+C
 
Last edited by a moderator:
J

jet_nguyen

Bài 29: Tính tích phân: I=30xx2+2+21+x2dxI=\int^0_{\sqrt3} \dfrac{x}{x^2+2+2\sqrt{1+x^2}}dx

Bài 30: Tính tích phân: I=8016x2dxI=\int^0_{\sqrt8}\sqrt{16-x^2}dx

Bài 31: Tính tích phân: I=π6π2sinxsin2x+12dxI=\displaystyle \int^{\frac{\pi}{2}}_{\frac{\pi}{6}} \sin x \sqrt{\sin^2x+\dfrac{1}{2}}dx

Bài 32: Tính tích phân:
I=0π62sin2(π4x)cos2xdx.I=\int\limits_{0}^{\dfrac{\pi}{6}} \dfrac{2\sin^2(\dfrac{\pi}{4}-x)}{\cos 2x}\mathrm{d}x.

Bài 33: Tính tích phân: I=0π3sinx(x+1)cos3xdxI=\int\limits_0^\dfrac{\pi}{3} {\dfrac{\sin x(x+1)}{\cos^3 x}} dx

 
Last edited by a moderator:
T

truongduong9083

Bài 34: Tính tích phân: I=13dxx21+x2I=\displaystyle \int^{\sqrt{3}}_{1} \dfrac{dx}{x^2\sqrt{1+x^2}}

Bài 35: Tính tích phân: I=01x4+x2+1x6+1dxI=\displaystyle \int^1_{0} \dfrac{x^4+x^2+1}{x^6+1}dx

Bài 36: Tính tích phân: I=1e12lnxx1+2lnxdxI=\displaystyle \int^{\sqrt{e}}_{1} \dfrac{1-2lnx}{x\sqrt{1+2\ln x}}dx

Bài 37: Tính tích phân: I=0π2sin5xsin5x+cos5xdxI=\displaystyle \int^{\dfrac{\pi}{2}}_{0} \dfrac{\sin^5x}{\sin^5x+\cos^5x}dx

Bài 38: Tính tích phân: I=01dx(1+x3)1+x33dxI=\displaystyle \int^{1}_{0} \dfrac{dx}{(1+x^3)\sqrt[3]{1+x^3}}dx

 
Last edited by a moderator:
N

newstarinsky

Bài 34: Tính tích phân: I=13dxx21+x2I=\displaystyle \int^{\sqrt{3}}_{1} \dfrac{dx}{x^2\sqrt{1+x^2}}



Đặt x=tantdx=(1+tan2t)dtx=\tan t\Leftrightarrow dx=(1+\tan^2t)dt
Đổi cận
$x=1\Rightarrow t=\dfrac{\pi}{4}\\
x=\sqrt{3}\Rightarrow t=\dfrac{\pi}{3}$

Nên $I=\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{3}}\dfrac{(1+\tan^2t).\cos t}{\tan^2t}dt\\
=\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{3}} \dfrac{1}{\tan^2t.cost}dt\\
=\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{3}}\dfrac{\cos t}{\sin t}dt\\
=\int_{\dfrac{\pi}{4}}^{\dfrac{\pi}{3}}\dfrac{d( \sin t)}{ \sin t}\\
=\ln(\sin t)\\
=\ln(\sqrt{\dfrac{3}{2}})$
 
Last edited by a moderator:
N

nghgh97

Bài 38: Tính tích phân:
I=011(1+x3)1+x33dxI = \int\limits_0^1 {\frac{1}{{(1 + {x^3})\sqrt[3]{{1 + {x^3}}}}}} dx
Em làm thử nhé :p
Đặt: t=1+x3dt=3x2dx t = 1 + {x^3} \Rightarrow dt = 3{x^2}dx
Ta có:
\bullet x=0t=1 x = 0 \Rightarrow t = 1
\bullet x=1t=2x = 1 \Rightarrow t = 2
I=121tt3dt=121t43dt=12t4/3dt=3t1/3=3t3=3(23+1)I = \int\limits_1^2 {\frac{1}{{t\sqrt[3]{t}}}} dt = \int\limits_1^2 {\frac{1}{{\sqrt[3]{{{t^4}}}}}} dt = \int\limits_1^2 {{t^{ - 4/3}}} dt = \left| { - 3{t^{ - 1/3}}} \right| = \left| { - 3\sqrt[3]{t}} \right| = 3\left( {\sqrt[3]{2} + 1} \right)
 
Last edited by a moderator:
S

sky_fly_s2

Bài 29: Tính tích phân: I=30xx2+2+21+x2dxI=\int^0_{\sqrt3} \dfrac{x}{x^2+2+2\sqrt{1+x^2}}dx



I=30x(1+x2+1)2dx\Leftrightarrow I=\int^0_{\sqrt3} \dfrac{x}{(\sqrt{1+x^2}+1)^2}dx
Đặt 1+x2=tt2=1+x2tdt=xdx\sqrt{1+x^2}=t \Rightarrow t^2=1+x^2 \Rightarrow tdt=xdx
Đổi cận x=0t=1x=0 \Rightarrow t=1
x=3t=2x=\sqrt{3} \Rightarrow t=2
I=12t(t+1)2dt\Leftrightarrow I=\int^2_{1} \dfrac{t}{(t+1)^2}dt
I=12t+1(t+1)2dt121(t+1)2dt=lnt+11t+1=ln216\Leftrightarrow I=\int^2_{1} \dfrac{t+1}{(t+1)^2}dt-\int^2_{1} \dfrac{1}{(t+1)^2}dt=ln|t+1|-\dfrac{1}{t+1}=ln2-\dfrac{1}{6}
Bài 30: Tính tích phân: I=8016x2dxI=\int^0_{\sqrt8}\sqrt{16-x^2}dx
Đặt x=4sintdx=4costdtx=4\sin t \Rightarrow dx=4\cos tdt
Đổi cận x=0t=0x=0 \Rightarrow t=0
x=8t=π4x=\sqrt{8} \Rightarrow t=\frac{\pi}{4}
I=40π4cost1616sin2tdt=160π4cos2tdt=80π4(cos2t+1)dt=4sin2t+8t=π2+4I=4\int^\frac{\pi}{4}_{0}\cos t\sqrt{16-16\sin^2t}dt=16\int^\frac{\pi}{4}_{0}\cos^2tdt=8 \int ^\frac{\pi}{4}_{0}(\cos2t+1)dt=4\sin2t+8t=\dfrac{\pi}{2}+4

P/s: Bạn chịu khó viết hoa đầu câu nhé, cảm ơn bạn nhiều.
 
Last edited by a moderator:
V

vivietnam



Bài 37: Tính tích phân: I=0π2sin5xsin5x+cos5xdxI=\displaystyle \int^{\dfrac{\pi}{2}}_{0} \dfrac{\sin^5x}{\sin^5x+\cos^5x}dx


Đặt x=π2tdx=dt x=\dfrac{\pi}{2}-t \Longrightarrow dx=-dt
I=0π2cos5tsin5t+cos5tdt I=\displaystyle \int^{\dfrac{\pi}{2}}_{0} \dfrac{cos^5t}{sin^5t+cos^5t}dt
Do tích phân không phụ thuộc vào biến
2I=dxI=π4 \Longrightarrow 2I=\displaystyle \int dx \Longrightarrow I=\dfrac{\pi}{4}
 
Last edited by a moderator:
V

vivietnam



Bài 33: Tính tích phân: I=0π3sinx(x+1)cos3xdxI=\int\limits_0^\dfrac{\pi}{3} {\dfrac{\sin x(x+1)}{\cos^3 x}} dx

I=120π3(x+1)d(1cos2x)=12x+1cos2x0π3+12tanx0π3=2π3+3+32I=-\displaystyle \dfrac{1}{2}\int_{0}^{\dfrac{\pi}{3}}(x+1)d(\dfrac{1}{cos^2x})=-\dfrac{1}{2}\dfrac{x+1}{cos^2x}|_0^{\dfrac{\pi}{3}}+\dfrac{1}{2}tanx|_{0}^{\dfrac{\pi}{3}}=-\dfrac{2\pi}{3}+\dfrac{-3+\sqrt{3}}{2}
 
S

sky_fly_s2


Bài 35: Tính tích phân: I=01x4+x2+1x6+1dxI=\displaystyle \int^1_{0} \dfrac{x^4+x^2+1}{x^6+1}dx

I=01x4+x2+1(x2+1)(x4x2+1dx=011x2+1dx+2011x6+1dx\Leftrightarrow I=\displaystyle \int^1_{0} \dfrac{x^4+x^2+1}{(x^2+1)(x^4-x^2+1}dx=\displaystyle \int^1_{0} \dfrac{1}{x^2+1}dx+2\displaystyle \int^1_{0} \dfrac{1}{x^6+1}dx
tính tích phân I1=011x2+1dxI_{1}=\displaystyle \int^1_{0} \dfrac{1}{x^2+1}dx.Đặt x=tantdx=1cos2tdtx=tant \Rightarrow dx=\frac{1}{cos^2t}dt
Đổi cận x=0t=0x=0 \Rightarrow t=0
x=1t=π4x=1 \Rightarrow t=\frac{\pi}{4}
I1=011cos2t(tan2t+1)dt=01dt=π4\Leftrightarrow I_{1}=\displaystyle \int^1_{0} \dfrac{1}{cos^2t(tan^2t+1)}dt=\displaystyle \int^1_{0}dt=\frac{\pi}{4}
tính tích phân I2=011x6+1dxI_{2}=\displaystyle \int^1_{0} \dfrac{1}{x^6+1}dx.Đặt u=x3du=3x2dxu=x^3 \Rightarrow du=3x^2dx
cận không đổi
I2=13011u2+1du\Leftrightarrow I_{2}=\frac{1}{3}\displaystyle \int^1_{0} \dfrac{1}{u^2+1}du
tương tự như I1I_{1} ta tính được I2=π12I_{2}=\frac{\pi}{12}
Vậy I=I1+2I2=5π12I=I_{1}+2I_{2}=\frac{5\pi}{12}
 
S

sky_fly_s2


Bài 36: Tính tích phân: I=1e12lnxx1+2lnxdxI=\displaystyle \int^{\sqrt{e}}_{1} \dfrac{1-2lnx}{x\sqrt{1+2\ln x}}dx

Đặt t=1+2lnxt2=1+2lnxtdt=1xdxvaˋ12lnx=2t2t=\sqrt{1+2\ln x} \Longrightarrow t^2=1+2lnx \Longrightarrow tdt=\frac{1}{x}dx và 1-2lnx=2-t^2
Đổi cận x=1t=1x=1 \Longrightarrow t=1
x=et=2x=\sqrt{e} \Longrightarrow t=\sqrt{2}
I=12(2t2)ttdt=12(2t2)dt=2tt33=4253\Longleftrightarrow I=\displaystyle \int^{\sqrt{2}}_{1} \dfrac{(2-t^2)t}{t}dt=\displaystyle \int^{\sqrt{2}}_{1} {(2-t^2)}dt=2t-\frac{t^3}{3}=\frac{4\sqrt{2}-5}{3}


 
Last edited by a moderator:
V

vivietnam


Bài 31: Tính tích phân: I=π6π2sinxsin2x+12dxI=\displaystyle \int^{\frac{\pi}{2}}_{\frac{\pi}{6}} \sin x \sqrt{\sin^2x+\dfrac{1}{2}}dx


I=π6π2sinx32cos2xdxI=\displaystyle \int^{\frac{\pi}{2}}_{\frac{\pi}{6}} \sin x \sqrt{\dfrac{3}{2}-cos^2x}dx
Đặt cosx=32.sintsinxdx=32.costdt cosx=\sqrt{\dfrac{3}{2}}.sint \Longrightarrow -sinxdx=\sqrt{\dfrac{3}{2}}.costdt
I=32π40cos2tdtI=-\displaystyle \dfrac{3}{2}\int^{0}_{\frac{\pi}{4}} cos^2tdt
I=34π40(1+cos2t)dtI=-\displaystyle \dfrac{3}{4}\int^{0}_{\frac{\pi}{4}}(1+cos2t)dt
I=34(t+sin2t2)π40=34.(π4+12)I=-\dfrac{3}{4}(t+\dfrac{sin2t}{2})|_{\frac{\pi}{4}}^0=\dfrac{3}{4}.(\dfrac{\pi}{4}+\dfrac{1}{2})

Bài 32: Tính tích phân:
I=0π62sin2(π4x)cos2xdx.I=\int\limits_{0}^{\dfrac{\pi}{6}} \dfrac{2\sin^2(\dfrac{\pi}{4}-x)}{\cos 2x}\mathrm{d}x.


I=0π61sin2xcos2xdxI=\displaystyle \int_0^{\dfrac{\pi}{6}} \dfrac{1-sin2x}{cos2x}dx
I=0π6(cos2xsin22x1sin2xcos2x)dxI=\displaystyle \int_0^{\dfrac{\pi}{6}}(\dfrac{cos2x}{sin^22x-1}-\dfrac{sin2x}{cos2x})dx
I=(14ln(sin2x1sin2x+1)+12.lncos2x)0pi6 I=(\dfrac{1}{4} ln(|\dfrac{sin2x-1}{sin2x+1}|)+\dfrac{1}{2}.lncos2x)|_{0}^{\dfrac{\\pi}{6}}
I=14.ln(323+2)+12.ln(12)I=\dfrac{1}{4}.ln(\dfrac{\sqrt{3}-2}{\sqrt{3}+2})+\dfrac{1}{2}.ln(\dfrac{1}{2})
 
Last edited by a moderator:
J

jet_nguyen

Bài 39: Tính tích phân: I=133+lnx(x+1)2dxI=\displaystyle \int^3_{1} \dfrac{3+\ln x}{(x+1)^2}dx (Trích đề khối B - 2009)

Bài 40: Tính tích phân: I=0π6tan4xcos2xdxI=\displaystyle \int^{\dfrac{\pi}{6}}_{0} \dfrac{\tan^4x}{\cos2x}dx (Trích đề khối A - 2008)

Bài 41: Tính tích phân: 0π6sinx2cos2xdx\int\limits_0^{\frac{\pi }{6}} {\dfrac{{\sin x}}{{2\cos 2x}}} dx

Bài 42: Tính tích phân:I=01x3ln(4x24+x2)dxI = \int\limits_0^1 {{x^3}\ln \left( {\dfrac{{4 - {x^2}}}{{4 + {x^2}}}} \right)} dx

Bài 43: Tính tích phân :π4π2(sin2x2x)cot2xdx\int\limits_{\frac{\pi }{4}}^{\frac{\pi }{2}} {\left( {\sin ^2 x - 2x} \right)\cot ^2 xdx}
 
T

truongduong9083

Bài 44: Tính tích phân :0π6x.sinxcos2xdx\int\limits_0^{\frac{\pi }{6}} {x.\sin x{{\cos }^2}xdx}

Bài 45: Tính tích phân :I=0πsin3x+cos3x3+sin2xdxI = \int\limits_0^\pi {\dfrac{{\sin ^3 x + \cos ^3 x}}{{3 + {\mathop{\rm s}\nolimits} {\rm in2x}}}dx}


Bài 46: Tính tích phân: I=11dx1+x+1+x2dxI=\displaystyle \int^{1}_{-1} \dfrac{dx}{1+x+\sqrt{1+x^2}}dx

Bài 47: Tính tích phân: I=π4π2xcosxsin3xdxI=\displaystyle \int^{\dfrac{\pi}{2}}_{\dfrac{\pi}{4}} \dfrac{x\cos x}{\sin^3x}dx

Bài 48: Tính tích phân: I=01x2.e2x(x+1)2dxI=\displaystyle \int^1_{0} \dfrac{x^2.e^{2x}}{(x+1)^2}dx
 
Last edited by a moderator:
V

vivietnam



Bài 45: Tính tích phân :I=0πsin3x+cos3x3+sin2xdxI = \int\limits_0^\pi {\dfrac{{\sin ^3 x + \cos ^3 x}}{{3 + {\mathop{\rm s}\nolimits} {\rm in2x}}}dx}


I=0π(sinx+cosx)(4(3+sin2x))3+sin2xdxI=\displaystyle \int_0^{\pi} \dfrac{(sinx+cosx)(4-(3+sin2x))}{3+sin2x}dx
I=0π4d(sinxcosx)4(sinxcosx)20π(sinx+cosx)dxI=\displaystyle \int_0^{\pi}\dfrac{4d(sinx-cosx)}{4-(sinx-cosx)^2}-\displaystyle \int_0^{\pi} (sinx+cosx)dx
I=ln(t2t+2)11+2 I=-ln(|\dfrac{t-2}{t+2}|)|_{-1}^1+2
I=22ln3 I=2-2ln3
 
Last edited by a moderator:
V

vivietnam

Bài 39: Tính tích phân: I=133+lnx(x+1)2dxI=\displaystyle \int^3_{1} \dfrac{3+\ln x}{(x+1)^2}dx (Trích đề khối B - 2009)


I=13(3+lnx).d(1x+1)=(3+lnxx+1)13+131x(x+1) I=-\displaystyle \int_1^3 (3+lnx).d(\dfrac{1}{x+1})=-(\dfrac{3+lnx}{x+1})|_1^3+\displaystyle \int_1^3 \dfrac{1}{x(x+1)}
I=3+ln34+32+ln(xx+1)13 I=-\dfrac{3+ln3}{4}+\dfrac{3}{2}+ln(\dfrac{x}{x+1})|_1^3
I=3ln34+ln(34)+ln2I=\dfrac{3-ln3}{4}+ln(\dfrac{3}{4})+ln2
 
Last edited by a moderator:
V

vivietnam


Bài 40: Tính tích phân: I=0π6tan4xcos2xdxI=\displaystyle \int^{\dfrac{\pi}{6}}_{0} \dfrac{\tan^4x}{\cos2x}dx (Trích đề khối A - 2008)

I=0π6tan4x.d(tanx)1tan2xI=\displaystyle \int^{\dfrac{\pi}{6}}_{0} \dfrac{\tan^4x.d(tanx)}{1-tan^2x}
I=013t4.dt1t2I=\displaystyle \int_0^{\dfrac{1}{\sqrt{3}}} \dfrac{t^4.dt}{1-t^2}

I=013(1t21(1+t2))dtI=\displaystyle \int_0^{\dfrac{1}{\sqrt{3}}}( -\dfrac{1}{t^2-1}-(1+t^2))dt
I=(12lnt1t+1t33t)013I=(-\dfrac{1}{2}ln|\dfrac{t-1}{t+1}|-\dfrac{t^3}{3}-t)|_ 0^{\dfrac{1}{\sqrt{3}}}


I=12.ln(313+1)10327I=-\dfrac{1}{2}.ln(\dfrac{\sqrt{3}-1}{\sqrt{3}+1})-\dfrac{10\sqrt{3}}{27}







Bài 46: Tính tích phân: I=11dx1+x+1+x2dxI=\displaystyle \int^{1}_{-1} \dfrac{dx}{1+x+\sqrt{1+x^2}}dx

I=10dx1+x+1+x2+01dx1+x+1+x2=I1+I2I=\int_{-1}^0 \dfrac{dx}{1+x+\sqrt{1+x^2}}+\int_0^1 \dfrac{dx}{1+x+\sqrt{1+x^2}} =I_1+I_2

Xét I1I_1

Đặt x=tdx=dt x=-t \Longrightarrow dx=-dt

I1=01dt1+1+t2tI_1=\int_0^1 \dfrac{dt}{1+\sqrt{1+t^2}-t}

Do tích phân không phụ thuộc biến

I=01dx1+1+x2x+01dx1+x+1+x2I= \int_0^1 \dfrac{dx}{1+\sqrt{1+x^2}-x} +\int_0^1 \dfrac{dx}{1+x+\sqrt{1+x^2}}

I=01dxI=1I=\int_0^1 dx \Longrightarrow I=1
 
Last edited by a moderator:
V

vivietnam



I=1201(11x+1)2d(e2x)I=\dfrac{1}{2}\int_0^1 (1-\dfrac{1}{x+1})^2d(e^{2x})

I=12.e2x0101d(e2x)x+101e2xd(1x+1)I=\dfrac{1}{2}.e^{2x}|_0^1-\int_0^1 \dfrac{d(e^{2x})}{x+1} -\int_0^1 e^{2x}d(\dfrac{1}{x+1})

I=e21201d(e2x)x+1e2xx+101+01d(e2x)x+1I=\dfrac{e^{2}-1}{2}-\int_0^1 \dfrac{d(e^{2x})}{x+1}-\dfrac{e^{2x}}{x+1}|_0^1+\int_0^1 \dfrac{d(e^{2x})}{x+1}

I=e212e22+1=12I=\dfrac{e^{2}-1}{2}-\dfrac{e^2}{2}+1 =\dfrac{1}{2}
 
Last edited by a moderator:
V

vivietnam

Bài 42: Tính tích phân:I=01x3ln(4x24+x2)dxI = \int\limits_0^1 {{x^3}\ln \left( {\dfrac{{4 - {x^2}}}{{4 + {x^2}}}} \right)} dx

I=1201t(ln(4t)ln(4+t))dtI=\dfrac{1}{2}\int_0^1 t(\ln(4-t)-\ln(4+t))dt
I=1401(ln(4t)ln(4+t))d(t2)I=\dfrac{1}{4} \int_0^1 (\ln(4-t)-\ln(4+t))d(t^2)
I=14(ln(4t)ln(4+t))t201+1401(t24t+t24+t)dtI=\dfrac{1}{4}(\ln(4-t)-\ln(4+t))t^2|_0^1+\dfrac{1}{4} \int_0^1 (\dfrac{t^2}{4-t}+\dfrac{t^2}{4+t})dt
I=14.ln35+1401(164tt4+164+t+t4)dtI=\dfrac{1}{4}.\ln\dfrac{3}{5} +\dfrac{1}{4} \int_0^1 (\dfrac{16}{4-t}-t-4 +\dfrac{16}{4+t}+t-4)dt
I=14ln35+14(16ln(4t)8t+16ln(t+4))01I=\dfrac{1}{4}\ln\dfrac{3}{5}+\dfrac{1}{4}(16\ln(4-t)-8t+16\ln(t+4))|_0^1
I=14ln35+14(16ln15168)I=\dfrac{1}{4}\ln\dfrac{3}{5} +\dfrac{1}{4} (16\ln\dfrac{15}{16}-8)
 
Last edited by a moderator:
Top Bottom