V
vivietnam
Bài 19:Tìm nguyên hàm $ I=\displaystyle\int \dfrac{dx}{\tan^6x} $
$ \displaystyle\int \dfrac{d(\tan x)}{\tan^6x(\tan^2x+1)} $
$=\displaystyle \int \dfrac{dt}{t^6(t^2+1)}$
$=\displaystyle \int \dfrac{dt}{t^4(t^2.(t^2+1))}$
$=\displaystyle \int \dfrac{1}{t^4}(\dfrac{1}{t^2}-\dfrac{1}{t^2+1})dt$
$=\displaystyle \int \dfrac{dt}{t^6}-\displaystyle \int \dfrac{1}{t^2.t^2.(t^2+1)}dt$
$=\displaystyle \int t^{-6}dt-\displaystyle \int t^{-4}dt+\displaystyle \int t^{-2}dt-\displaystyle \int\dfrac{dt}{t^2+1}$
$=\dfrac{t^{-7}}{-7}-\dfrac{t^{-5}}{-5}+\dfrac{t^{-3}}{-3}-arctant+C $
Last edited by a moderator: