Ôn Thi Đại Học 2013.

J

jet_nguyen

Bài 2: Tìm nguyên hàm: x4+1x+1dx \displaystyle \int \dfrac{x^4+1}{x+1}dx

Bài 3: Tìm nguyên hàm: xx34dx \displaystyle \int \sqrt[4]{x\sqrt[3]{x}} dx

Bài 4:
Tìm nguyên hàm: $ \displaystyle \int \dfrac{x \mbox{d}x}{\sqrt[3]{x+1} - \sqrt{x+1}}$
 
L

l94

Bài 1: Tìm nguyên hàm: dxex1 \displaystyle \int \dfrac{dx}{e^x-1}

t=ex1dt=exdxt=e^x-1 \Longrightarrow dt=e^xdxdtt(t+1)=(1t1t+1)dt=lntt+1+C\int\frac{dt}{t(t+1)}=\int(\frac{1}{t}-\frac{1}{t+1})dt=ln\frac{t}{t+1}+C
Bài 2: Tìm nguyên hàm: x4+1x+1dx \displaystyle \int \dfrac{x^4+1}{x+1}dx

I=[x3x2+x1+2x+1]dx=x44x33+x22x+2ln(x+1)+CI=\int [x^3-x^2+x-1+\frac{2}{x+1}]dx=\frac{x^4}{4}-\frac{x^3}{3}+\frac{x^2}{2}-x+2ln(x+1)+C

Bài 3: Tìm nguyên hàm: xx34dx \displaystyle \int \sqrt[4]{x\sqrt[3]{x}} dx
I=x3dx=3x434+C I=\int \sqrt[3]{x}dx=\frac{3\sqrt[3]{x^4}}{4}+C
 
Last edited by a moderator:
T

truongduong9083


Bài 4:
Tìm nguyên hàm: $ \displaystyle \int \dfrac{x \mbox{d}x}{\sqrt[3]{x+1} - \sqrt{x+1}}$
\bullet Đặt t=x+16x=t61dx=6t5dtt = \sqrt[6]{x+1} \Rightarrow x = t^6 - 1 \Rightarrow dx = 6t^5dt
\bullet Vậy I=6t5(t61)t2t3dt=6t3(t61)t1dt=6t3(t5+t4+t3+t2+t+1)dtI = 6 \displaystyle \int \dfrac{t^5(t^6-1)}{t^2-t^3}dt = -6\displaystyle \int \dfrac{t^3(t^6-1)}{t-1}dt = -6 \displaystyle \int t^3(t^5+t^4+t^3+t^2+t+1)dt
=6[t99+t88+t77+t66+t55+t44]+C = -6[\dfrac{t^9}{9}+\dfrac{t^8}{8}+\dfrac{t^7}{7}+ \dfrac{t^6}{6}+\dfrac{t^5}{5}+\dfrac{t^4}{4}]+C
 
T

truongduong9083

Bài 5. Tìm nguyên hàm sinx(sinx+cos3x)dx \displaystyle \int \sin x(\sin x+\cos^3x)dx

Bài 6. Tìm nguyên hàm dxsin2xcos2x+1 \displaystyle \int \dfrac{dx}{\sin2x-\cos2x+1}

Bài 7. Tìm nguyên hàm dx2x+1+4x+1 \displaystyle \int \dfrac{dx}{2x+1+\sqrt{4x+1}}

Bài 8. Tìm nguyên hàm dxsin4x.cosx \displaystyle \int \dfrac{dx}{\sin^4x.\cos x}
 
Last edited by a moderator:
V

vivietnam

Bài 5. Tìm nguyên hàm sinx(sinx+cos3x)dx \displaystyle \int \sin x(\sin x+\cos^3x)dx

Ta có: I=(sin2x+cos3xsinx)dx=(1cos2x2+cos3x.sinx)dx=x2sin2x4cos4x4+CI= \displaystyle \int (\sin^2x+\cos^3x\sin x)dx=\displaystyle \int (\frac{1-\cos2x}{2}+\cos^3x.\sin x)dx=\frac{x}{2}-\frac{\sin2x}{4}-\frac{\cos^4x}{4}+C
 
Last edited by a moderator:
L

l94


Bài 6. Tính nguyên hàm dxsin2xcos2x+1 \displaystyle \int \dfrac{dx}{\sin2x-\cos2x+1}
Ta có: I=dx2sinx(cosx+sinx)=dx2cos2x[tanx(1+tanx)]=d(tanx)2tanx(1+tanx)=12lntt+1+CI= \displaystyle \int \dfrac{dx}{2\sin x(\cos x+\sin x)}=\displaystyle \int \dfrac{dx}{2\cos^2x[\tan x(1+\tan x)]}=\displaystyle \int \dfrac{d(\tan x)}{2\tan x(1+\tan x)}=\dfrac{1}{2}ln\frac{t}{t+1}+C
 
Last edited by a moderator:
S

sky_fly_s2


Bài 7. Tính nguyên hàm I=dx2x+1+4x+1I= \displaystyle \int \dfrac{dx}{2x+1+\sqrt{4x+1}}

Ta có:
I=2dx4x+1+24x+1+1I=2\displaystyle \int \dfrac{dx}{4x+1+2\sqrt{4x+1}+1}
Đặt 4x+1=tx=t214dx=tdt2\sqrt{4x+1}=t \Longrightarrow x = \dfrac{t^2-1}{4} \Longrightarrow dx=\dfrac{tdt}{2}
I=tdt(t+1)2=dtt+1dt(t+1)2=lnt+1+1t+1+CI=\displaystyle \int \dfrac{tdt}{(t+1)^2}=\displaystyle \int \dfrac{dt}{t+1}-\displaystyle \int \dfrac{dt}{(t+1)^2}=ln|t+1|+\frac{1}{t+1}+C


Ta có: I=cosxdxsin4x.cos2x=dsinxsin4x.(1sin2x)=(sin4x1+sin4x)dsinxsin4x.(1sin2x)I= \displaystyle \int \dfrac{cosxdx}{\sin^4x.\cos^2 x}= \displaystyle \int \dfrac{d\sin x}{\sin^4x.(1-\sin^2x)}=-\displaystyle \int \dfrac{(\sin^4x-1+\sin^4x)d\sin x}{\sin^4x.(1-\sin^2x)}I=(sin2x+1)dsinxsin4x+dsinxsin2x1=dsinxsin2xdsinxsin4x+12dsinxsinx112dsinxsinx+1\Longrightarrow I=-\displaystyle \int \dfrac{(\sin^2x+1)d\sin x}{\sin^4x}+\displaystyle \int \dfrac{d\sin x}{\sin^2x-1}=-\displaystyle \int \dfrac{d\sin x}{\sin^2x}-\displaystyle \int \dfrac{d\sin x}{\sin^4x}+\dfrac{1}{2}\displaystyle \int \dfrac{d\sin x}{\sin x-1}-\dfrac{1}{2}\displaystyle \int \dfrac{d\sin x}{\sin x+1}I=1sinx13sin3x+12lnsinx1sinx+1+C\Longrightarrow I=-\dfrac{1}{\sin x}-\dfrac{1}{3\sin ^3x}+\dfrac{1}{2}\ln \bigg|\dfrac{\sin x-1}{\sin x+1} \bigg|+C

P/s: Dùng cỡ chữ 4, kiểu chữ Times New Roman, và không bôi đen nhé.
 
Last edited by a moderator:
J

jet_nguyen


Để tiện cho các bạn giải bài mà vẫn không ảnh hưởng tới việc học, từ giờ mình sẽ mở Topic và post 10 bài vào thứ 7 để các bạn có thời gian giải và ôn luyện, khi các bài đã giải xong mình sẽ khóa lại vì theo yêu cầu của nhiều bạn muốn Topic chậm lại để phù hợp với lịch học trên trường.

Bài 9: Tìm nguyên hàm $I=\displaystyle \int \dfrac{e^x}{\sqrt{(e^x+1)^3}}\mbox{d}x$


Bài 10: Tìm nguyên hàm $I=\displaystyle \int \dfrac{e^{2x}}{\sqrt{e^x-1}} \mbox{d}x$

Bài 11: Tìm nguyên hàm $I=\displaystyle \int \dfrac{x^3}{1+\sqrt[3]{x^4+1}}\mbox{d}x$

Bài 12: Tìm nguyên hàm $I=\displaystyle \int \dfrac{x^5+2x^3}{\sqrt{x^2+1}} \mbox{d}x$

Bài 13: Tìm nguyên hàm $I=\displaystyle \int \dfrac{1}{\sqrt{(1-x^2)^3}} \mbox{d}x$
 
Last edited by a moderator:
J

jet_nguyen

Bài 14: Tìm nguyên hàm $I=\displaystyle \int \left(\dfrac{\ln x}{x} \right)^2 \mbox{d}x$

Bài 15: Tìm nguyên hàm I=x2dx(xsinx+cosx)2dx I=\displaystyle \int \dfrac{x^{2}dx}{(x\sin x+\cos x)^2}dx

Bài 16: Tìm nguyên hàm I=x4xdxI= \displaystyle \int \sqrt{\dfrac{x}{4-x}}dx

Bài 17: Tìm nguyên hàm $I=\displaystyle \int x^2 \ln (1+x) \mbox{d}x$

Bài 18: Tìm nguyên hàm $I=\displaystyle \int \dfrac{\sin x}{\cos^2x\sqrt{1+\cos^2x}}\mbox{d}x$
 
Last edited by a moderator:
S

sky_fly_s2

Bài 9: Tìm nguyên hàm $I=\displaystyle \int \dfrac{e^x}{\sqrt{(e^x+1)^3}}\mbox{d}x$
$I=\displaystyle \int \dfrac{e^x}{\sqrt{(e^x+1)^3}}\mbox{d}x$
$\Leftrightarrow I=\displaystyle \int \dfrac{1}{(e^x+1)^\frac{3}{2}}\mbox{d}(e^x+1)=-\frac{1}{2}\sqrt[]{\frac{1}{e^x+1}}+C$

Bài 10: Tìm nguyên hàm $I=\displaystyle \int \dfrac{e^{2x}}{\sqrt{e^x-1}} \mbox{d}x$
$I=\displaystyle \int \dfrac{e^{2x}}{\sqrt{e^x-1}} \mbox{d}x$
Đặt ex+1=texdx=dte^x+1=t \Rightarrow e^xdx=dt
$I=\displaystyle \int \dfrac{t+1}{\sqrt{t}} \mbox{d}t=\frac{3}{2}\sqrt[]{t^3}+\frac{1}{2}\sqrt[]{t}+C$


Bài 12: Tìm nguyên hàm $I=\displaystyle \int \dfrac{x^5+2x^3}{\sqrt{x^2+1}} \mbox{d}x$
$I=\displaystyle \int \dfrac{x^5+2x^3}{\sqrt{x^2+1}} \mbox{d}x$
Đặt x2+1=tdt=xx2+1\sqrt{x^2+1}=t \Rightarrow dt=\frac{x}{\sqrt[]{x^2+1}}
$\Rightarrow I=\displaystyle \int \dfrac{(t^2-1)^2+2.(t^2-1)}{1} \mbox{d}x=\frac{t^5}{5}-t+C$

Bài 13: Tìm nguyên hàm $I=\displaystyle \int \dfrac{1}{\sqrt{(1-x^2)^3}} \mbox{d}x$
$I=\displaystyle \int \dfrac{1}{\sqrt{(1-x^2)^3}} \mbox{d}x$
Đặt x=sintdx=costdxx=sint \Rightarrow dx=costdx
$\Rightarrow I=\displaystyle \int \dfrac{cost}{\sqrt{(1-sin^2t)^3}} \mbox{d}t=\displaystyle \int \dfrac{1}{cos^2t} \mbox{d}t=tant+C$
 
Last edited by a moderator:
V

vivietnam

Bài 16: Tìm nguyên hàm I=x4xdxI= \displaystyle \int \sqrt{\dfrac{x}{4-x}}dx

Đặt x=4cos2tdx=8costsintdtx=4\cos^2t \Longrightarrow dx=-8\cos t\sin tdt

I=costsint.8sint.costdt=8cos2tdt=4(1+cos2t)dt=4(t+sin2t2)+CI= -\displaystyle \int \dfrac{\cos t}{\sin t}.8\sin t.\cos tdt=-\displaystyle \int 8\cos^2tdt=-4\displaystyle \int (1+\cos2t)dt=-4(t+\dfrac{\sin2t}{2})+C

P/s: Anh dùng Longrightarrow thay cho Rightarrow thì dùng trong thẻ $ sẽ không bị lỗi và đẹp hơn anh nhé. ;)
 
Last edited by a moderator:
S

sky_fly_s2

Bài 14: Tìm nguyên hàm $I=\displaystyle \int \left(\dfrac{\ln x}{x} \right)^2 \mbox{d}x$

Đặt u=lnx2du=2xx2dxu=lnx^2 \Longrightarrow du=\dfrac{2x}{x^2}dxdv=1x2v=1xdv=\dfrac{1}{x^2} \Longrightarrow v=-\frac{1}{x}
$\Longrightarrow I=-\dfrac{lnx^2}{x}+\displaystyle \int \left(\dfrac{2}{x^2} \right) \mbox{d}x=-\dfrac{lnx^2}{x}-\frac{2}{x}+C$
Bài 17:Tìm nguyên hàm $I=\displaystyle \int x^2 \ln (1+x) \mbox{d}x$
Đặt u=ln(x+1)du=1x+1dxu=ln(x+1) \Rightarrow du=\frac{1}{x+1}dxdv=x2dxv=x33dv=x^2dx \Rightarrow v=\frac{x^3}{3}
$\Rightarrow I=\dfrac{x^3.ln(x+1)}{3}-\dfrac{1}{3}\displaystyle \int \dfrac{x^3}{x+1} \mbox{d}x=\dfrac{x^3.ln(x+1)}{3}-\dfrac{1}{3}\displaystyle \int \dfrac{x^3+1-1}{x+1} \mbox{d}x=\dfrac{x^3.ln(x+1)}{3}+\dfrac{1}{3}ln
|x+1|-\dfrac{1}{3}\left(\dfrac{x^3}{3}-\dfrac{x^2}{2}+x\right)+C$
 
Last edited by a moderator:
V

vivietnam

Bài 18: Tìm nguyên hàm $I=\displaystyle \int \dfrac{\sin x}{\cos^2x\sqrt{1+\cos^2x}}\mbox{d}x$
Đặt cosx=tantsinxdx=dtcos2t \cos x=\tan t \Longrightarrow -\sin xdx=\dfrac{dt}{\cos^2t}
I=costdttan2t.cos2t=costdtsin2t=1sint+C \Longrightarrow I=-\displaystyle \int \dfrac{\cos tdt}{\tan^2t.\cos^2t} =-\displaystyle \int \dfrac{\cos tdt}{\sin^2t}=\dfrac{1}{\sin t}+C

P/s: Anh thay \longrightarrow bằng \Longrightarrow thì sẽ được dấu suy ra anh nhé.
 
Last edited by a moderator:
V

vivietnam

Bài 19:Tìm nguyên hàm I=dxtan6x I=\displaystyle\int \dfrac{dx}{\tan^6x}

Bài 20:Tìm nguyên hàm I=sin5xdx I=\displaystyle \int \sin^5x dx

Bài 21:Tìm nguyên hàm I=dxsin3x I=\displaystyle \int \frac{dx}{\sin^3x}

Bài 22:Tìm nguyên hàm I=x2ln2xdx I=\displaystyle \int x^2\ln^2xdx

Bài 23:Tìm nguyên hàm I=1+sinxdx I=\displaystyle \int \sqrt{1+\sin x}dx
 
Last edited by a moderator:
T

truongduong9083

I=x2dx(xsinx+cosx)2dx=xcosx(xsinx+cosx)2.xcosxdx I=\displaystyle \int \dfrac{x^{2}dx}{(x\sin x+\cos x)^2}dx = - \displaystyle \int \dfrac{-xcosx}{(x\sin x+\cos x)^2}.\dfrac{x}{cosx}dx
Đặt {u=xcosxdv=xcosx(xsinx+cosx)2dx{du=xsinx+cosxcos2xdxv=1xsinx+cosx\left\{ \begin{array}{l} u = \dfrac{x}{\cos x} \\ dv = \dfrac{- x\cos x}{(x\sin x+\cos x)^2}dx \end{array} \right. \Longrightarrow \left\{ \begin{array}{l} du = \dfrac{x\sin x+\cos x}{\cos^2x}dx \\ v = \dfrac{1}{x\sin x+\cos x} \end{array} \right.
Vậy I=xcosx(xsinx+cosx)+I=dxcos2x=xcosx(xsinx+cosx)+tanx+CI = -\dfrac{x}{\cos x(x\sin x+\cos x)} + I=\displaystyle \int \dfrac{dx}{\cos^2x} = -\dfrac{x}{\cos x(x\sin x+\cos x)} + \tan x + C



Bài 11: Tìm nguyên hàm $I=\displaystyle \int \dfrac{x^3}{1+\sqrt[3]{x^4+1}}\mbox{d}x$


Đặt t=x4+13x4=t31x3dx=34t2dtt = \sqrt[3]{x^4+1}\Longrightarrow x^4 = t^3- 1 \Longrightarrow x^3dx = \dfrac{3}{4}t^2dt
Vậy I=34t2t+1dt=34(t1+1t+1)=34[t22tlnt+1]+CI=\dfrac{3}{4}\displaystyle \int \dfrac{t^2}{t+1}dt = \dfrac{3}{4}\displaystyle \int (t-1 + \dfrac{1}{t+1}) = \dfrac{3}{4}[\dfrac{t^2}{2}-t - ln|t+1|]+C
 
Last edited by a moderator:
J

jet_nguyen

Bài 24:Tìm nguyên hàm I=dxsinx I=\displaystyle\int \dfrac{dx}{\sin x}

Bài 25:Tìm nguyên hàm I=11+sinx+cosxdx I=\displaystyle \int \dfrac{1}{1+\sin x+\cos x} dx

Bài 26:Tìm nguyên hàm I=cosx7+cos2xdx I=\displaystyle \int \dfrac{\cos x}{\sqrt{7+\cos 2x}}dx

Bài 27:Tìm nguyên hàm I=dxx(x10+1)2 I=\displaystyle \int \dfrac{dx}{x(x^{10}+1)^2}

Bài 28:Tìm nguyên hàm I=(4x22x1)e2xdx I=\displaystyle \int(4x^2-2x-1)e^{2x}dx
 
X

xlovemathx



Bài 20:Tìm nguyên hàm I=sin5xdx I=\displaystyle \int \sin^5x dx


Ta có : sin5xdx=sin4x.sinxdx=(1cos2x)2.sinxdx\displaystyle \int \sin^5 xdx= \int \sin^4 x.\sin xdx= -\int(1-\cos^2 x)^2.\sin xdx

Đặt u=cosxdu=sinxdxu=\cos x \Longrightarrow du=-\sin xdx

Khi đó ta có I=(12u2+u4)du=u+23u315u5+CI=-\int (1-2u^2+u^4)du = -u+\dfrac{2}{3}u^3-\dfrac{1}{5}u^5 + C


Ta có : dxsin3x=sinxsin4x=sinx(1cos2x)2dx\displaystyle \int \dfrac{dx}{\sin^3 x}=\int \dfrac{\sin x}{\sin^4 x}=\int \dfrac{\sin x}{(1-\cos^2 x)^2}dx

Đổi biến số , đặt u=cosxdu=sinxdxu=\cos x \Longrightarrow du=-\sin xdx

Khi đó :
$\begin{aligned}
I&=\displaystyle -\int \dfrac{du}{(1-u^2)^2}=\int \dfrac{du}{(u^2-1)^2}= \int \dfrac{1}{4}(\dfrac{1}{u-1}-\dfrac{1}{u+1})^2du \\
& \displaystyle =-\dfrac{1}{4}\left(\int \dfrac{1}{(u-1)^2}du + \int \dfrac{du}{(u+1)^2}\right) -\dfrac{1}{2}\int \dfrac{1}{(u-1)(u+1)}du \\
& = -\dfrac{1}{4(u-1)} -\dfrac{1}{4(u+1)} -\dfrac{1}{4}\ln \left|\dfrac{u-1}{u+1}\right| + C
\end{aligned}$

Bài 23:Tìm nguyên hàm I=1+sinxdx I=\displaystyle \int \sqrt{1+\sin x}dx
I=1+sinxdx=(sinx2+cosx2)2dx=sinx2+cosx2dx=2sin(x2+π4)dx\displaystyle I=\int \sqrt{1+\sin x}dx=\int \sqrt{\left(\sin \dfrac{x}{2} +\cos \dfrac{x}{2} \right)^2}dx = \int \left|\sin \dfrac{x}{2}+\cos \dfrac{x}{2} \right| dx =\sqrt{2}\int \left|\sin \left(\dfrac{x}{2}+\dfrac{\pi}{4}\right) \right|dx

Sau đó xét âm dương để tính nguyên hàm .



 
Last edited by a moderator:
X

xlovemathx

Bài 24:Tìm nguyên hàm I=dxsinx I=\displaystyle\int \dfrac{dx}{\sin x}
Ta có :
I=dxsinx=sinxsin2xdx=sinx1cos2xdx=sinxcos2x1dx\displaystyle I=\int \dfrac{dx}{\sin x}=\int \dfrac{\sin x}{\sin^2 x}dx=\int \dfrac{\sin x}{1-\cos^2 x}dx= \int \dfrac{-\sin x}{\cos^2 x-1}dx

Đặt u=cosxdu=sinxdxu=\cos x \Longrightarrow du=-\sin xdx

Khi đó :
I=duu21=12lnu1u+1+C\displaystyle I=\int \dfrac{du}{u^2-1}=-\dfrac{1}{2}\ln \left|\dfrac{u-1}{u+1}\right| + C

Bài 25:Tìm nguyên hàm I=11+sinx+cosxdx I=\displaystyle \int \dfrac{1}{1+\sin x+\cos x} dx
Ta có :
I=dx1+cosx+sinx=dx1+1tan2x21+tan2x2+2tanx21+tan2x2=(1+tan2x2)2(1+tanx2)dx\displaystyle I=\int \dfrac{dx}{1+\cos x+\sin x}=\dfrac{dx}{1+\dfrac{1-\tan^2 \dfrac{x}{2}}{1+\tan^2 \dfrac{x}{2}}+\dfrac{2\tan \dfrac{x}{2}}{1+\tan^2 \dfrac{x}{2}}} = \int \dfrac{\left(1+\tan^2 \dfrac{x}{2} \right)}{2\left(1+\tan \dfrac{x}{2}\right)}dx

Đổi biến số u=tanx2du=12(1+tan2x2)dxu=\tan \dfrac{x}{2} \Longrightarrow du=\dfrac{1}{2}\left(1+\tan^2 \dfrac{x}{2} \right)dx

Khi đó : I=2du2(1+u)=du1u=ln(1+u)+C\displaystyle I=\int \dfrac{2du}{2(1+u)}=\int \dfrac{du}{1-u}=\ln (1+u) +C
 
Last edited by a moderator:
T

truongduong9083

Bài 22:Tìm nguyên hàm I=x2ln2xdx I=\displaystyle \int x^2\ln^2xdx
\bullet Đặt {u=ln2xdv=x2dx{du=2lnxxv=x33\left\{ \begin{array}{l} u = ln^2x \\ dv = x^2dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = \dfrac{2lnx}{x} \\ v = \dfrac{x^3}{3} \end{array} \right.
Vậy I=x33.ln2x23I1I = \dfrac{x^3}{3}.ln^2x - \dfrac{2}{3}I_1 (1)
\bullet Tính I1=x2lnxdxI_1=\displaystyle \int x^2lnxdx
Đặt {u=lnxdv=x2dx{du=dxxv=x33\left\{ \begin{array}{l} u = lnx \\ dv = x^2dx \end{array} \right. \Rightarrow \left\{ \begin{array}{l} du = \dfrac{dx}{x} \\ v = \dfrac{x^3}{3} \end{array} \right.
Vậy I1=x33.lnx13x2dx=x33.lnxx39I_1 = \dfrac{x^3}{3} .lnx- \dfrac{1}{3}\displaystyle \int x^2dx = \dfrac{x^3}{3} .lnx - \dfrac{x^3}{9} (2)
Thế (2) vào (1) ta được
I=x33.ln2x2x39.lnx2x327+CI = \dfrac{x^3}{3}.ln^2x - \dfrac{2x^3}{9} .lnx - \dfrac{2x^3}{27}+C
 
Last edited by a moderator:
T

truongduong9083

Ta có: I=dxx(x10+1)2=11010x9dxx10(x10+1)2 I=\displaystyle \int \dfrac{dx}{x(x^{10}+1)^2} = \dfrac{1}{10}\displaystyle \int \dfrac{10x^9dx}{x^{10}(x^{10}+1)^2}
Đặt t=x10+1dx=10x9dxt = x^{10}+1\Longrightarrow dx = 10x^9dx
Vậy I=110dtt2(t1)I = \dfrac{1}{10}\displaystyle \int \dfrac{dt}{t^2(t-1)}
=110t2(t21)dtt2(t1)= \dfrac{1}{10}\displaystyle \int \dfrac{t^2-(t^2-1)dt}{t^2(t-1)}
=110dtt1110dtt110dtt2= \dfrac{1}{10}\displaystyle \int \dfrac{dt}{t-1} - \dfrac{1}{10}\displaystyle \int \dfrac{dt}{t}- \dfrac{1}{10}\displaystyle \int \dfrac{dt}{t^2}
=110lnt1t+110t+C= \dfrac{1}{10}ln|\dfrac{t-1}{t}|+ \dfrac{1}{10t}+C
 
Last edited by a moderator:
Top Bottom