D
duynhan1
Chia cho [TEX]x^2[/TEX] và để ý : [TEX]d( x- \frac{1}{x}) = ( 1 +\frac{1}{x^2}) dx[/TEX][tex]\alpha, \int\limits_{\frac{1}{2}}^{1}\frac{x^2+1}{x^4+1} dx[/tex]
Áp dụng HSBD ta phân tích được :[tex]\beta, \int\limits_{0}^{1}\frac{2x+3}{(x+1)^2(x+2)} dx[/tex]
[TEX]\frac{2x+3}{(x+1)^2(x+2)} = \frac{1}{(x+1)^2}+ \frac{1}{x+1} - \frac{1}{x+2}[/TEX]
[TEX]t=-x[/TEX][tex]\gamma, \int\limits_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\frac{cosxcoss2x}{e^x+1} dx[/tex]
[TEX]2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} cosx . cos 2x dx \\ = \frac12 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} ( cos 3x + cos x) dx [/TEX]
[TEX]t=\sqrt{1- cos^3 x} \Rightarrow 1- t^2 = cos^3 x \Rightarrow - 2tdt = 3 sin x . cos^2 x [/TEX][tex]\delta, \int\limits_{0}^{\frac{\pi}{2}}cos^4xsin2x\sqrt{1-cos^3x} dx[/tex]
[TEX]I = \frac{-4}{3} \int_0^1 t^2( 1-t^2) dt [/TEX]
[TEX]I = \int\limits_{0}^{\frac{\pi}{8}}\frac{x}{1+cos4x} dx + \int\limits_{0}^{\frac{\pi}{8}}\frac{sin4x}{1+cos4x} dx[/TEX][tex]\epsilon, \int\limits_{0}^{\frac{\pi}{8}}\frac{x+sin4x}{1+cos4x} dx[/tex]
Tính [TEX]I_1[/TEX]:
[TEX]\left{ u = x \\ dv = \frac{1}{1+ cos 4x} d x= \frac{1}{2 sin^28x} dx \right. \ \ \Rightarrow \left{ du = dx \\ v = -\frac{cot8x}{16}dx[/TEX]