R
riverflowsinyou1
Giải pt:
$\frac{1}{x}+\frac{1}{\sqrt{3-x^2}}=1$
\Rightarrow $\frac{x-1}{x}=\frac{1}{\sqrt{3-x^2}}$
\Leftrightarrow $(x-1)^2(3-x^2)=x$
$(x^2-2x+1)(3-x^2)=x$
\Leftrightarrow $-x^4+2x^3+2x^2-7x+3=0$ giải pt
$\frac{1}{x}+\frac{1}{\sqrt{3-x^2}}=1$
\Rightarrow $\frac{x-1}{x}=\frac{1}{\sqrt{3-x^2}}$
\Leftrightarrow $(x-1)^2(3-x^2)=x$
$(x^2-2x+1)(3-x^2)=x$
\Leftrightarrow $-x^4+2x^3+2x^2-7x+3=0$ giải pt