Chuyên đề: Phương trình lượng giác.

M

miko_tinhnghich_dangyeu

[TEX]2)sin(3x-\frac{\pi}{4})=sin2xsin(x+\frac{\pi}{4})[/TEX]
[TEX]3)1+3tanx=2sin2x[/TEX]

2, Đặt [TEX]t=x+\frac{\pi}{4}\Rightarrow 2x=2t-\frac{\pi}{2} ;3x-\frac{\pi}{4}=3t-\pi[/TEX]

pt trở thành :

[TEX]sin3t=sin(2t-\frac{\pi}{2}).sint[/TEX]

[TEX]\Leftrightarrow sin3t=sin2t.sint[/TEX]

[TEX]\Leftrightarrow 3sint-4sin^3t=sin2t.sint[/TEX]

[TEX]\Leftrightarrow sint(3-4sin^3t-cos2t)=0[/TEX]

[TEX]\Leftrightarrow sint(cost+1)=0[/TEX]

3,
[TEX]1+3tanx=2sin2x[/TEX]
Đặt [TEX]tanx=t=> sin2x=\frac{2t}{1-t^2}[/TEX]

[TEX]\Rightarrow 1+ 3t=\frac{4t}{1-t^2}[/TEX]

[TEX]=> t=1[/TEX]
 
Last edited by a moderator:
T

thien_nga_1995

[TEX]1)\frac{1+cos^2x}{2(1-sinx)}-tan^2xsinx=\frac{1+sinx}{2}+tan^2x[/TEX]
\Leftrightarrow [TEX] \frac{1+cos^2x}{2(1-sinx)} - \frac{1+sinx}{2} = \frac{sin^2x}{cos^2x}(1+sinx)[/TEX]
\Leftrightarrow [TEX] (1+cos^2x)cos^2x - (1-sin^2x)cos^2x = 2sin^2x(1-sin^2x)[/TEX]
\Leftrightarrow[TEX] (1+cos^2x)cos^2x - (1-sin^2x)(cos^2x + 2sin^2x) = 0[/TEX]
\Leftrightarrow [TEX] cos^2x(1+cos^2x-cos^2x-2sin^2x) = 0[/TEX]
\Leftrightarrow [TEX]cos^2x(1-2sin^2x) = 0[/TEX]
 
T

thienthanlove20

5. [TEX](1 + tan x) cos^3x + (1 + cot x) sin^3x = \sqrt{2sin2x}[/TEX] ..................(1)

ĐK: cos x # 0

sin x # 0

[TEX] sin 2x \geq 0[/TEX]

[TEX]\Leftrightarrow sin 2x > 0[/TEX]

Pt (1) trở thành

[TEX]cos^3x + sin^3x + tanx.cos^3x + cotx.sin^3x = \sqrt{2sin2x}[/TEX]

[TEX]cos^3x + sin^3x + cos^2x . sin x + cos x. sin^2 x = \sqrt{2sin2x}[/TEX]

[TEX]sin^2x(sin x + cosx) + cos^2(cos x + sin x) = \sqrt{2sin2x}[/TEX]

[TEX](sin x + cos x)(sin^2x + cos^2x) = \sqrt{2sin2x}[/TEX]

[TEX]\Leftrightarrow \left\{\begin{matrix} sin x + cos x \geq 0 \\ (sin x + cos x)^2 = 2sin2x \end{matrix}\right.[/TEX]

[TEX]\Leftrightarrow \left\{\begin{matrix} \sqrt{2}sin(x + \frac{\Pi}{4}) \geq 0 \\ sin 2x = 1 \end{matrix}\right.[/TEX]

[TEX]\Leftrightarrow \left\{\begin{matrix} sin (x + \frac{\Pi}{4}) \geq 0 \\ (sin x + cos x)^2 = 2sin2x \end{matrix}\right.[/TEX]

[TEX]\Leftrightarrow \left\{\begin{matrix} sin (x + \frac{\Pi}{4}) \geq 0 \\ x = \frac{\Pi}{4} + k\Pi \end{matrix}\right.[/TEX]

[TEX]\Leftrightarrow \left\{\begin{matrix} sin (x + \frac{\Pi}{4}) \geq 0 \\ x = \frac{\Pi}{4} + m2\Pi, x = \frac{5\Pi}{4} + m2\Pi (loai) \end{matrix}\right.[/TEX]

[TEX]\Leftrightarrow x = \frac{\Pi}{4} + m2\Pi[/TEX]

ko hiểu tại sao nó lại có cái chữ $ /:) /:)
 
T

thienthanlove20

6. [TEX](2cos^22x + 1)^2 + \sqrt{1- cosx} = 0[/TEX]

[TEX]<=> cos^22x = \frac{-1}{2}[/TEX]

và cos x = 1

=> Nghiệm :D
 
T

tuyn

[TEX]4)cosx \sqrt{\frac{1}{cosx}-1}+cos3x \sqrt{\frac{1}{cos3x}-1}=1[/TEX]
[TEX]DK:cos3x,cosx > 0[/TEX]
Áp dụng BDT Cauchy:
[TEX]\sqrt{\frac{1}{cosx}-1} \leq \frac{\frac{1}{cosx}-1+1}{2}=\frac{1}{2cosx}[/TEX]
[TEX]\sqrt{\frac{1}{cos3x}-1} \leq \frac{\frac{1}{cos3x}-1+1}{2}=\frac{1}{2cos3x}[/TEX]
[TEX]\Rightarrow VT \leq cosx \frac{1}{2cosx}+cos3x \frac{1}{2cos3x}=1[/TEX]
[TEX]\Rightarrow PT \Leftrightarrow \left{\begin{cosx=\frac{1}{2}}\\{cos3x=\frac{1}{2}}[/TEX]
 
T

tuyn

Gptlg

[TEX]1)2cos4x-(\sqrt{3}-2)cos2x=sin2x+\sqrt{3},x \in [0;\pi][/TEX]
[TEX]2)3-4sin^22x=2cos2x(1+2sinx)[/TEX]
[TEX]3)tan(x-\frac{\pi}{6})tan(x+\frac{\pi}{3})sin3x=sinx+sin2x[/TEX]
[TEX]4)\frac{(sinx+cosx)^2-2sin^2x}{1+cot^2x}=\frac{\sqrt{2}}{2} [sin(\frac{\pi}{4}-x)-sin(\frac{\pi}{4}-3x)][/TEX]
 
M

metla2011

[TEX]1)2cos4x-(\sqrt{3}-2)cos2x=sin2x+\sqrt{3},x \in [0;\pi][/TEX]
[TEX]PT\Leftrightarrow 2(cos4x+cos2x)=sin2x+\sqrt{3}(2cos^2x-1)+\sqrt{3}[/TEX]
[TEX]\Leftrightarrow 4cos3xcosx=2sinxcosx+2\sqrt{3}cos^2x[/TEX]
[TEX]\Leftrightarrow \left[ cosx=0\\ cos3x=\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx \right[/TEX]
[TEX]\Leftrightarrow \left[ cosx=0\\ cos3x=cos(x-\frac{\pi}{6})[/TEX].........
 
H

hothithuyduong

[TEX]2)3-4sin^22x=2cos2x(1+2sinx)[/TEX]

[TEX]\leftrightarrow 3 - 16sin^2x.cos^2x = (2 + 4sinx).(1 - 2sin^2x)[/TEX]

[TEX]\leftrightarrow 3 - 16.sin^2x.(1 - sin^2x) = 2 - 4sin^2x + 4sinx - 8sin^3x[/TEX]

[TEX]\leftrightarrow 3 - 16sin^2x + 16sin^4x - 2 + 4sin^2x - 4sinx + 8sin^3x = 0[/TEX]

[TEX]\leftrightarrow 16sin^4x + 8sin^3x - 12sin^2x - 4sinx + 1 = 0[/TEX]


 
H

hothithuyduong

[TEX] [TEX]4)\frac{(sinx+cosx)^2-2sin^2x}{1+cot^2x}=\frac{\sqrt{2}}{2} [sin(\frac{\pi}{4}-x)-sin(\frac{\pi}{4}-3x)][/TEX]

[TEX]\leftrightarrow \frac{1 + sin2x - 2sin^2x}{\frac{1}{sin^2x}} = \sqrt{2}cos(\frac{\pi}{4} - 2x)sinx [/TEX]

[TEX]\leftrightarrow sin^2x.(1 + sin2x - 2sin^2x) = (cos2x + sin2x).sinx[/TEX]

[TEX]\leftrightarrow sin^2x.(1 + sin2x - 2sin^2x) - (cos^2x + sin^2x + sin2x - 2sin^2x).sinx = 0[/TEX]

[TEX]\leftrightarrow sin^2x.(1 + sin2x - 2sin^2x) - (1 + sin2x - 2sin^2x).sinx = 0[/TEX]

[TEX]\leftrightarrow sinx.(1 - 2sin^2x + sin2x).(sinx - 1) = 0 [/TEX]

[TEX]\leftrightarrow sinx.(sinx - 1).(cos2x + sin2x) = 0 [/TEX]


 
T

thien_nga_1995

\Leftrightarrow[TEX]sinx(1-cos^2x)+(cosx-1)(cosx+2)=0[/TEX]

[TEX]\Leftrightarrow(cosx-1)[cosx+2-sinx(cosx+1)]=0[/TEX]

[TEX]\Leftrightarrow\left\[cosx=1\\sinx-cosx+sinxcosx-2=0[/TEX]
Tớ cũng giải ra được y như cậu nhưng cái này chỗ này làm sao tìm nghiệm được hả cậu :
[TEX]sinx-cosx+sinxcosx-2=0[/TEX]
 
S

socola01

các bạn làm mấy ý này thử xem nha ^^

1. [TEX]9sinx + 6cosx - 3sin2x + cos2x = 8[/TEX]

2 [TEX]sin2x + 2cos2x = 1+sinx - 4cosx [/TEX]

3. [TEX]2sin2x - cos2x = 7sinx + 2cosx - 4[/TEX]

4. [TEX] (sin2x - \sqr{3}cos2x )^2 - 5 = cos(2x - \frac{\pi}{6}) [/TEX] ( *)

5. [TEX]2cos^3x + cos2x + sinx =0[/TEX]

6. [TEX]1 + cot2x = \frac{1 - cos2x}{sin^22x} [/TEX]
 
H

hothithuyduong

1. [TEX]9sinx + 6cosx - 3sin2x + cos2x = 8[/TEX]


[TEX]\leftrightarrow 9sinx + 6cosx - 6sinx.cosx + 1 - 2sin^2x - 8 = 0[/TEX]

[TEX]\leftrightarrow 9sinx - 9 + 6cosx - 6sinx.cosx + 2 - 2sin^2x = 0[/TEX]

[TEX]\leftrightarrow 9.(sinx - 1) + 6cosx.(1 - sinx) + 2.(1 - sin^2x) = 0[/TEX]

[TEX]\leftrightarrow 9.(sinx - 1) - 6cosx.(sinx - 1) + 2.(1 - sinx).(1 + sinx) = 0[/TEX]

[TEX]\leftrightarrow (sinx - 1).[9 - 6cosx - 2.(1 + sinx)] = 0[/TEX]

[TEX]\leftrightarrow (sinx - 1).(-6cosx - 2sinx + 7) = 0[/TEX]

[TEX]\left[\begin{sinx = 1}\\{-6cosx - 2sinx + 7 = 0 (1)}[/TEX]

Vì [TEX](-6)^2 + (-2)^2 <\ 7^2[/TEX] nên [TEX](1)[/TEX] Vô nghiệm

Do đó nghiệm của phương trình đã cho là
[TEX]sinx = 1 \leftrightarrow x = \frac{\pi}{2} + k2\pi[/TEX]
 
Top Bottom