\Leftrightarrow
[TEX]2)\sqrt{2}sin^3(x+\frac{\pi}{4})=2sinx[/TEX]
[TEX]4)\frac{sin2x}{cosx}+\frac{cos2x}{sinx}=tanx-cotx[/TEX]
[TEX]2)\sqrt{2}sin^3(x+\frac{\pi}{4})=2sinx[/TEX]
Đặt [TEX]x + \frac{\pi}{4} =t [/TEX]
\Rightarrow [TEX]x= t - \frac{\pi}{4}[/TEX]
\Leftrightarrow [TEX]\sqrt{2} sin^3t = 2sin(t - \frac{\pi}{4})[/TEX]
\Leftrightarrow [TEX] \sqrt{2}sin^3t = \sqrt{2} ( sint - cost) [/TEX]
\Leftrightarrow [TEX]sin^3t = sint - cost[/TEX]
\Leftrightarrow[TEX] sint(sin^2t-1) +cost = 0 [/TEX]
\Leftrightarrow [TEX] -sintcos^2t + cost = 0[/TEX]
\Leftrightarrow [TEX] -cost( sintcost - 1 ) =0 [/TEX]
[TEX]4)\frac{sin2x}{cosx}+\frac{cos2x}{sinx}=tanx-cotx[/TEX]
Đk: sin2x #0
\Leftrightarrow[TEX] sin2xcosx + cos2xcosx = sin^2x - cos^2x[/TEX]
\Leftrightarrow [TEX] cosx - sin^2x + cos^2x = 0[/TEX]
\Leftrightarrow[TEX]cosx - ( 1- cos^2x) + cos^2x = 0[/TEX]
\Leftrightarrow[TEX]2cos^2x +cosx -1 =0 [/TEX]