D
duchieu300699
Tiếp nào
Cho $x,y,z>0$ thoả mãn $x^2+y^2+z^2=3$. Chứng minh rằng :
$\frac{x^3}{\sqrt{1+y^2}}+\frac{y^3}{\sqrt{1+z^2}}+\frac{z^3}{\sqrt{1+x^2}}$ \geq $\frac{3}{\sqrt{2}}$
$ \dfrac{x^3}{\sqrt{1+y^2}}+\dfrac{y^3}{\sqrt{1+z^2}}+\dfrac{z^3}{\sqrt{1+x^2}}=\dfrac{x^4}{x\sqrt{1+y^2}}+\dfrac{y^4}{y\sqrt{1+z^2}}+\dfrac{z^4}{z\sqrt{1+x^2}} $ \geq $\dfrac{(x^2+y^2+z^2)^2}{x\sqrt{1+y^2}+y\sqrt{1+z^2}+z\sqrt{1+x^2}}$
Mặt khác: $(x\sqrt{1+y^2}+y\sqrt{1+z^2}+z\sqrt{1+x^2})^2$ \leq $(x^2+y^2+z^2)(x^2+y^2+z^2+3)$$=2(x^2+y^2+z^2)^2$
$\rightarrow$ $x\sqrt{1+y^2}+y\sqrt{1+z^2}+z\sqrt{1+x^2}$ \leq $\sqrt{2}(x^2+y^2+z^2)$
Vậy $\dfrac{(x^2+y^2+z^2)^2}{x\sqrt{1+y^2}+y\sqrt{1+z^2}+z\sqrt{1+x^2}}$ \geq $\dfrac{(x^2+y^2+z^2)^2}{\sqrt{2}(x^2+y^2+z^2)}$=$\dfrac{3}{\sqrt{2}}$