Nhận dạng tam giác:
[TEX]1, a.cot{\frac{C}{2}} + b.cot{\frac{C}{2}} = b.tanB + a.tanA[/TEX]
[TEX]3, sin{\frac{A}{2}}.cos^3{\frac{B}{2}} = sin{\frac{B}{2}}.cos^3{\frac{A}{2}}[/TEX]
[TEX]1, a.cot{\frac{C}{2}} + b.cot{\frac{C}{2}} = b.tanB + a.tanA[/TEX]
[TEX]\Leftrightarrow a. (tan {\frac{A+B}{2} }- tan A) = -b. (tan {\frac{A+B}{2} }- tan B)[/TEX]
[TEX]\Leftrightarrow sin A. {\frac{sin {\frac{B-A}{2}} }{cos {\frac{A+B}{2}} . cos A} = sin B. {\frac{sin {\frac{B-A}{2}}}{cos {\frac{A+B}{2} }. cos B}[/TEX]
[TEX]\Leftrightarrow \left[ \begin{tan A= tan B}\\{sin {\frac{B-A}{2}} = 0} [/TEX]
[TEX]\Leftrightarrow A=B[/TEX]
[TEX]3, sin{\frac{A}{2}}.cos^3{\frac{B}{2}} = sin{\frac{B}{2}}.cos^3{\frac{A}{2}}[/TEX]
[TEX]\frac{sin{\frac{A}{2}}}{cos^3{\frac{A}{2}}} = \frac{sin{\frac{B}{2}}}{cos^3{\frac{B}{2}}}[/TEX]
[TEX]\Leftrightarrow tan {\frac{A}{2}} . (1+ tan^2 {\frac{A}{2}}) = tan {\frac{B}{2}} . (1+ tan^2 {\frac{B}{2}}) (3') [/TEX]
[TEX]Set \ \ : \ \ \left{ \begin{x= tan {\frac{A}{2}}}\\{y= tan {\frac{B}{2}}} [/TEX]
Do [TEX]0<A; B< \pi \Rightarrow x,y >0 [/TEX]
[TEX](3') \Leftrightarrow x^3 + x - y^3 - y = 0[/TEX]
[TEX]\Leftrightarrow (x-y)(x^2+y^2+xy + 1) =0[/TEX]
[TEX]\Leftrightarrow x=y[/TEX]
[TEX]\Leftrightarrow A=B[/TEX]
Bài 4:
[TEX]\sqrt{3} bc = R (2(b+c)-a)[/TEX]
[TEX]\Leftrightarrow \frac{2R}{b} + \frac{2R}{c} - \frac{a.R}{bc} = \sqrt{3}[/TEX]
[TEX]\Leftrightarrow \frac{1}{sin B} + \frac{1}{sin C} - \frac12 sin A . \frac{1}{sin B. sin C} = \sqrt{3}[/TEX]
[TEX]\Leftrightarrow sin B + sin C - \frac12 sin (B+C) = \sqrt{3}.sin B.sin C[/TEX]
[TEX]\Leftrightarrow sin B + sin C = sinB(\frac{\sqrt{3}}{2}.sin C + \frac12 cos C) + sinC(\frac{\sqrt{3}}{2}.sin B + \frac12 cos B)[/TEX]
[TEX]\Leftrightarrow sin B + sin C = sin B . sin ( C+\frac{{\pi}}{6}) + sin C . sin ( B+\frac{{\pi}}{6})[/TEX]
[TEX]VT \geq VP [/TEX]
Dấu "=" xảy ra khi và chỉ khi:
[TEX]\left{ \begin{C= \frac{{\pi}}{3}}\\{B= \frac{{\pi}}{3}}[/TEX]