Bài 1:
$P=\sum \dfrac{x}{\sqrt{1+x^2}}
\\=\sum \dfrac{x}{\sqrt{xy+yz+zx+x^2}}
\\=\sum \dfrac{x}{\sqrt{(x+y)(x+z)}}
\\=\sum \dfrac{\sqrt{x}.\sqrt{x}}{\sqrt{(x+y)(x+z)}}
\\\leq \sum \dfrac{1}{2}(\dfrac{x}{x+y}+\dfrac{x}{x+z})
\\=\dfrac{3}{2}$
Dấu '=' $x=y=z=...$
Bài 2:
$\sum \dfrac{1}{x^2+2y^2+3}...