\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2} \geq \dfrac{2}{1+ab}
<=> \dfrac{a^2+b^2+2}{(a^2+1)(b^2+1)} \geq \dfrac{2}{1+ab}
=> (a^2+b^2+2)(ab+1) \geq 2(a^2+1)(b^2+1)
<=> a^3b+a^2+ab^3+b^2+2ab+2 - 2(a^2b^2+a^2+b^2+1) \geq 0
<=> ab(a^2-2ab+b^2)-(a^2-2ab+b^2) \geq 0
<=> (ab-1)(a-b)^2 \geq 0 ( Luôn đúng, ab...