S
star_lucky_o0o
[TEX]9>\frac{9}{2}\\\Rightarrow\frac{a}{b(b-c)}+\frac{b}{c(c-a)}+\frac{c}{a(a-b)} > \frac{9}{2}[/TEX]Híc,Hình như nó lớn hơn 9 hay sao ấy chứ!!!!
Giải bừa: Giả sử a \geqb\geqc
Ta có :[TEX] a>b-c[/TEX]
[TEX] b>a-c[/TEX]
[TEX] c>a-b[/TEX]
[TEX] \Rightarrow \frac{a}{b(b-c)}+\frac{b}{c-a}+\frac{c}{a(a-b)}>\frac{a}{ab}+\frac{b}{bc}+\frac{c}{ca}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}[/TEX]
Ta có BDT :
[TEX] (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq9[/TEX]
[TEX] \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq 9[/TEX]
[tex] \Rightarrow \frac{a}{b(b-c)} + \frac{b}{c(c-a)} + \frac{c}{a(a-b)} > 9 [/tex]
ok?