L
letrang3003
tiếp tục
câu 2,
d,[TEX]I=\int \frac{dx}{(x^2+2x+5)^2}[/TEX]
tiếp tục
câu 2,
d,[TEX]I=\int \frac{dx}{(x^2+2x+5)^2}[/TEX]
[TEX]SAI\ \ \ \ \ x+1=2tgt\Rightarrow{dx=2(1+tg^2t)dt\Rightarrow{I= \frac{1}{8}\int{cos^2tdt=\frac{1}{16}\int{(1+cos2t)dt=\frac{1}{16}t+\frac{1}{32}sin2t+C=\frac{1}{16}arctg{\frac{x+1}{2}}+\frac{1}{8}\frac{x+1}{x^2+2x+5}+C[/TEX]
[TEX]2/\ \ \ \ \ \ I=\int_{\frac{1}{sqrt3}}^{\sqrt3}\frac{1}{1+x^2+x^4+x^6}dx\ \ \ \ \ \ \ \ \ \ [/TEX]
[TEX]1/\ \ \ \ I=\int_0^1\frac{x}{\sqrt{x+1}+\sqrt[3]{x+1}}dx\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [/TEX]
[TEX]3/\ \ \ \ I=\int_0^1e^{\ ^{2x-e^{x}}}dx[/TEX]
đặt x=-t\Rightarrowdx=-dt
[TEX]\int \frac{(3x-5)^{10}}{(x+2)^{12}}dx=\int \frac{1}{11}({\frac{3x-5}{x+2})^{10}.d(\frac{3x-5}{x+2})=...............[/TEX]
tổng quát
1; [TEX]I = \int\limits_{}^{}cos^nx . sinnxdx = \frac{cos^nxcosnx}{2n} + \frac{1}{2} .\int_{}^{} co s ^{ n- 1} x sin ( n- 1) x dx[/TEX]
2; [TEX]I = \int\limits_{}^{}cos^nx . cosnxdx=\frac{cos^nx sin nx}{2n} + \frac{1}{2} .\int_{}^{} co s ^{ n- 1} x cos ( n- 1) x dx[/TEX]
Làm câu 1 thôi nha ..không hiểu bài này
giải thích rõ ràng hơn đi
sao lại có cái cos(n-1)x với sin(n-1)x
[TEX]I= \int_{\frac{1}{a}}^{a}\frac{f(x)}{(1+x^2)(1+x^{n})}dx\ \ \ \ \ \ f(x)=f(\frac{1}{x})[/TEX]
[TEX]t=\frac{1}{x}\Rightarrow{dt=-\frac{1}{t^2}dt[/TEX]
[TEX]\Rightarrow{I=\int_{\frac{1}{a}}^{a}\frac{\frac{1}{t^2}.f(\frac{1}{t})}{(1+\frac{1}{t^2})(1+\frac{1}{t^{n}})}dt=\int_{\frac{1}{a}}^{a}\frac{t^{n}.f(t)}{(1+t^2)(1+t^{n})}dt==\int_{\frac{1}{a}}^{a}\frac{x^{n}.f(x)}{(1+x^2)(1+x^{n})}dx=I[/TEX]
[TEX]\Rightarrow{I=\frac{1}{2} \int_{\frac{1}{a}}^{a}\frac{f(x)}{1+x^2}dx[/TEX]
[TEX]I=\int_{-m}^{m}\frac{f(x)}{1+a^{g(x)}}dx[/TEX][TEX]\ \ \ \ \ \ \ \left{f(x)=f(-x)\\g(x)=-g(-x)\\a>0[/TEX]
Đặt [TEX]x=-t\Rightarrow{dx=-dt[/TEX]
[TEX]\Rightarrow{I=-\int_{m}^{-m}\frac{f(-t)}{1+a^{g(-t)}}dt=\int_{-m}^{m}\frac{f(t)}{1+a^{-g(t)}}}dt=\int_{-m}^{m}\frac{a^{g(t)}.f(t)}{1+a^{g(t)}}dt=\int_{-m}^{m}\frac{a^{g(x)}.f(x)}{1+a^{g(x)}}dx[/TEX]
[TEX]I+I=\int_{-m}^{m}\frac{f(x)}{1+a^{g(x)}}dx+\int_{-m}^{m}\frac{a^{g(x)}.f(x)}{1+a^{g(x)}}dx=\int_{-m}^{m} f(x)dx[/TEX]
[TEX]\Leftrightarrow{I=\frac{1}{2}\int_{-m}^{m} f(x)dx=\int_{0}^{m} f(x)dx[/TEX]
[TEX]I=\int_{\frac{1}{\sqrt3}}^{\sqrt3}\frac{1}{1+x^2+x^{4}+x^{6}}dx[/TEX][TEX](t=\frac{1}{x})[/TEX]
[TEX]\Rightarrow{I_{*}=\int_{\frac{1}{\sqrt3}}^{\sqrt3}\frac{1}{1+x^2+x^{2010}+x^{2012}}dx[/TEX]
[TEX]1/I=\frac{1}{2}\int{ln(x^2+x+1)d(x^2)=\frac{1}{2}x^2ln(x^2+x+1)-\frac{1}{2}\int{\frac{(2x+1)x^2}{x^2+x+1}dx=\frac{1}{2}x^2ln(x^2+x+1)-\frac{1}{2}\int(2x-1-\frac{1}{2}\frac{2x+1}{x^2+x+1}+\frac{3}{2}\frac{1}{(x+\frac{1}{2})^2+\frac{3}{4}})dx[/TEX]1.[tex]\int\limits_{0}^{1}x.ln(x^2+x+1)dx[/tex]
2.[tex]\int\limits_{0}^{\frac{\pi}{2}}sin^5xdx[/tex]
[TEX]t=\frac{1}{x}\Rightarrow{dx=-\frac{1}{t^2}dt[/TEX][tex] \int_{\frac{1}{\sqrt3}}^{\sqrt3}\frac{1}{1+x^2+x^4+x^6}dx=\int_{\frac{1}{\sqrt3}}^{\sqrt3}\frac{x^4}{(1+x^2)(1+x^4)}dx[/tex] ????????
bạn giải thích giùm mình cái mình nghĩ cái này sai òy
tiếp tục
câu 2,
a, [TEX]I=\int arctanxdx[/TEX]
b,[TEX]I=\int \frac{xdx}{\sqrt{x^2+x+2}}[/TEX]
c,[TEX]I=\int x.\sqrt{-x^2+3x-2}dx[/TEX]
d,[TEX]I=\int \frac{dx}{(x^2+2x+5)^2}[/TEX]
e,[TEX]I=\int sin^{n-1}x.sin(n+1)xdx[/TEX]
f,[TEX]I=\int e^{-2x}cos3xdx[/TEX]
g,[TEX]I= \int arcsin^2xdx[/TEX]