Y
yenngocthu


[TEX]1, x.2^x=x(3-x)+2(2^x-1)[/TEX]
[TEX]2,x^{log_29}=x^2.3^{log_2x}-x^{log_23}[/TEX]
[TEX]3,sin^2 x.2^{cos2x}+\frac12sin^22x+cos2x=1[/TEX]
[TEX]4,(26+15\sqrt3)^x+2(7+4\sqrt3)^x-2(2-\sqrt3)^x=1[/TEX]
[TEX]2,x^{log_29}=x^2.3^{log_2x}-x^{log_23}[/TEX]
[TEX]3,sin^2 x.2^{cos2x}+\frac12sin^22x+cos2x=1[/TEX]
[TEX]4,(26+15\sqrt3)^x+2(7+4\sqrt3)^x-2(2-\sqrt3)^x=1[/TEX]
[TEX]GPT{(\sqrt{3}+1)}^{x}+{(\sqrt{3}-1)}^{x}={2}^{x}[/TEX]trang 1
Tiếp theo là 1 BĐT logarit đơn giản :
CMR [TEX]{log}_{2}3>{log}_{3}4[/TEX]
Tr.1
Tr.2[/QUOTE]À quên tranh thủ post bài kiểm tra của mình lên luôn:
GPT [TEX]{2}^{cosx}+cosx.{3}^{x}=1[/TEX]
GPT [TEX]{3}^{sinx}+sinx.{2}^{x-1}=1[/TEX]
[TEX](1+cosx)(2+{4}^{cosx})=3.{4}^{cosx}[/TEX]
giải bất pt
[TEX]1.log_m(2x^2+x+3)\ge log_m(3x^2-x)[/TEX]biết x=1 là 1 nghiệm của pt trên .
[TEX]2.log_{x\sqrt3}(5x^2-18x+16}>2[/TEX]
[TEX]3.log_x(x-\frac14)\ge2[/TEX]Tr.2
thử làm mấy bài nha :
bài 1:
từ cái bài của @giangln.thanglong chúng ta có thể đưa ra bài toán tổng quát sau :
[tex] log_{n-1}n > log_{n}(n+1)[/tex].
bài 2 : giải pt
[tex]log_{7}x= log_{3}(\sqrt{x}+2)[/tex]
bài 3 : giải pt
[tex]log_5(\sqrt{x-2\sqrt{x-1}} + \sqrt {x+3-4\sqrt{x-1}}) = 5^{\sqrt{x-2\sqrt{x-1}} + \sqrt {x+3-4\sqrt{x-1}}[/tex]
bài 4 : giải pt
[tex]\frac{3}{2}log_{\frac{1}{4}}(x+2)^2 -3 = log_{\frac{1}{4}}(4-x)^3 + log_{\frac{1}{4}}(x+6)^3[/tex] ..
Tr.3
Giải phương trình :
[TeX]1, log_5x=log_3(x-x^{log_52})[/TeX]
2, Giải phương trình
[TeX]\large\log_7\(\cos\frac{x}{2}+3\text{tg}x-\frac{3\sqrt{3}}{2}\)+\log_{\frac{1}{7}}\(cos (\frac{x}{2})+\text{tg}2x-\frac{3\sqrt{3}}{2}\)=0[/TeX]
3,[TeX]\large 3\log_{2}^{2}\sin{x}+\log_2(1-\cos{2x})=2[/TeX]
4,[TeX]\large\frac{1}{4}+\log_2(\cos{x}).\log_2(2\cos{x})=\log_3(\text{tg}x).\log_2(2\cos^2{x})[/TeX]
5,[TeX]\large\frac{\log_2(2\sin{x})-\frac{1}{2}\log_2{3}}{\log_3(6+3\cos{2x})+\log_3{2}}=1[/TeX]
6,[TeX]\large (\log_3(2\cos{x}))^{\sin{x}-1}=\frac{1}{\sqrt{2}}[/TeX]
7,[TeX]\large\frac{2}{3}.3^{\log_6\text{tg}^2x}+\frac{3}{2}.2^{\log_6\text{tg}^2x}=6(3-\text{cotg}^{2}x)[/TeX]Tr.3
a, [tex]25^(1+2x-x^2)+9^(1+2x-x^2)>=34.5^(2x-x^2)[/tex]
b,[tex]7^(6-x)=x+2[/tex]
c,[tex]2^x=3^(x/2)+1[/tex]
d,[tex]\sqrt{-3x^2-5x+2}+2x>3^x.2x.\sqrt{-3x^2-5x+2} [/tex]Tr.4
thêm bài nữa nè : giải Pt
[tex]\sqrt{5^x-2x}- \sqrt{2x+1}= 1+4x+4x.5^x+5^{2x}[/tex]
Tr.4
tìm x biết
[TEX](x-1)^{3x-1}=x-1[/TEX]
cẩn thận kẻo nhầm)............................Tr.5
Không dùng logarit hãy CMR: [tex]2^3^{100} < 3^2^{100}[/tex]Tr.5
có mấy bài mới đây
[TEX]log_2(x-\sqrt{x^2-1}).log_3(x+\sqrt{x^2-1})=log_6(x+\sqrt{x^2-1})[/TEX]Tr.5
1,[TEX]log_2log_3log_4x=log_4log_3log_2x[/TEX]
2,[TEX]log_2log_3x+log_3log_2x=log_3log_3x[/TEX]Tr.6
trời có mấy ngày mà topic này chìm quá đi
thêm mấy bào nữa rùi chuyểnn sang tích phân
[TEX]1,x^{lg^2x^2-3lgx-4,5}=10^{-2lgx}[/TEX]
[TEX]2,5^{lgx}=50-x^{lg5}[/TEX]
[TEX]3,2^{log_5(x+3)=x[/TEX]Tr.7
Mọi người giải thử bài này xem : CMR với n>=0 thì
[tex]log_2(1+2^n)>log_3(3^n+\sqrt{2^n})[/tex]Tr.7
góp bài cho xôm ( chả bit có chưa )
Tìm nghiệm (x,y) từ pt:
[tex]8^{sin^2x} + 8^{cos^2x} = 10 + cos2y[/tex]Tr.8
giai jum toi bai ne cai':tim m để pt sau có 2n trái dấu
pt: [tex]m4^x - (2m + 1)2^x + m +4 = 0 [/tex]Tr.8Tìm m để PT sau có nghiệm duy nhất:
[tex]\frac{lg{(mx)}}{lg{(x+1)}} = 2[/tex]
Giải chi tiết hộ tớ nhá các bạn ! Thanks !
hôm trước đọc trong 1 quyển sách có 1 bài logarit cũng hay post lên cho mọi ngưòi giải thử nha
[TEX]log_2^{2x}+log_2\frac x4=5log_x8+25(log_x2)^2[/TEX]Tr.10
Last edited by a moderator: