[Toán 11] Topic giới hạn

D

duynhan1

gif.latex

[TEX]\huge \lim_{x%20\to%200}x\sin%20\frac{1}{x} = \lim_{x%20\to%200}x^2 \frac{\sin%20\frac{1}{x} }{\frac1x} = 0[/TEX]
 
V

vivietnam

C1

dùng L' là ra
C2

[TEX]=\lim_{x \to 3}(\frac{x^2-9}{sin(\frac{\pi}{2}-\frac{\pi.x}{6})})=\lim_{x \to 3}\frac{x^2-9}{\frac{\pi}{2}-\frac{\pi.x}{6}}.\frac{\frac{\pi}{2}-\frac{\pi.x}{6}}{sin(\frac{\pi}{2}-\frac{\pi.x}{6})}=\lim_{x \to 3}\frac{x+3}{\frac{\pi}{6}}=\frac{36}{\pi}[/TEX]
tưởng mất nick này
hú hồn
 
Last edited by a moderator:
V

vivietnam


tương tự bài hôm trước
[TEX]=\lim_{\frac{1}{x} \to 0}(-2cos(\frac{\sqrt{x+1}+\sqrt{x}}{2}).sin(\frac{\sqrt{x+1}-\sqrt{x}}{2})=\lim_{\frac{1}{x} \to 0}(-2.cos(\frac{\sqrt{x+1}+\sqrt{x}}{2}).sin(\frac{1}{2.(\sqrt{x+1}+\sqrt{x})})[/TEX]
ta có [TEX]\lim_{\frac{1}{x} \to 0}(\frac{1}{2.(\sqrt{x+1}+\sqrt{x})})=0[/TEX]
mà [TEX]|cos(\frac{\sqrt{x+1}+\sqrt{x}}{2})| \leq1[/TEX]
\Rightarrow[TEX]\lim_{\frac{1}{x} \to 0}(sin{\sqrt{x+1}}-sin\sqrt{x})=0[/TEX]
 
Last edited by a moderator:
V

vivietnam

[TEX]=\lim_{x \to 0}(\frac{\sqrt{1+tanx}-1+1-\sqrt{1+sinx}}{x^3}=\lim_{x \to 0}(\frac{tanx-sinx}{2x^3}=\lim_{x \to 0}(\frac{1-cosx}{2cosx.x^2}=\lim_{x \to 0}(\frac{2.sin^2{\frac{x}{2}}}{2x^2})=4[/TEX]
dùng cách nhân liên hợp cũng ra

[TEX]=\lim_{\frac{1}{x} \to 0}(\frac{(\sqrt{x+1}+\sqrt{x}).sin(2.(\sqrt{x+1}+\sqrt{x}))}{2x.sin(\sqrt{x+1}+\sqrt{x})}[/TEX]
bằng cách đặt [TEX]\frac{1}{x}=t [/TEX]
\Rightarrowlim =0
 
Last edited by a moderator:
L

letrang3003

[TEX]\huge1) \ \blue{ \lim_{x \to 0} x\cos \frac{1}{x}[/TEX]



[TEX]\huge2) \ \blue{\lim_{x \to 0} \frac{x}{a} \bigg[\frac{b}{x} \bigg] (a,b>0)[/TEX]



[TEX]\huge3) \ \blue{\huge \lim_{x \to +\infty} x(\sqrt{x^2+1}-\sqrt[3]{x^3+1})[/TEX]



[TEX]\huge4) \ \blue{\huge\lim_{x \to 0} x \bigg[\frac{1}{x}\bigg][/TEX]



[TEX]\huge5) \ \blue{\huge\lim_{ x \to 0} \frac{[x]}{x}[/TEX]



[TEX]\huge6) \ \blue{\huge\lim_{x \to 0} \frac{cos \bigg(\frac{\pi}{2} \cos x\bigg)}{\sin x(\sin x)}[/TEX]
 
B

bigbang195

[TEX]\huge3) \ \blue{\huge \lim_{x \to +\infty} x(\sqrt{x^2+1}-\sqrt[3]{x^3+1})[/TEX]
[/TEX]


[TEX]\huge \lim_{x \to +\infty} x(\sqrt{x^2+1}-\sqrt[3]{x^3+1}) = \lim_{x \to +\infty} \frac{x}{\sqrt{x^2+1} + x}-\frac{x}{\sqrt[3]{(x^3+1)^2}+x\sqrt[3]{x^3+1}+x^2} = \lim_{x \to +\infty} \frac{1}{2} - \frac{0}{3} = \frac12[/TEX]
 
Last edited by a moderator:
D

duynhan1

[TEX]\huge \red \fbox{A_1 = \lim_{x\to 2} (\frac{1}{x-2} - \frac{12}{x^3-8})[/TEX]

[TEX]\huge \blue \fbox{A_2 = \lim_{x\to 0} (\frac{\sqrt{1-2x+x^3} - 1 - x}{x})[/TEX]
 
D

duynhan1

[TEX]\huge \red \fbox{A_3 = \lim_{x \to 1 } ( \frac{\sqrt{2x+7}+x-4}{x^3-4x^2+3})} [/TEX]


[TEX]\huge \blue \fbox{A_4 = \lim_{x \to 1} (\frac{\sqrt[4]{x}-1}{\sqrt[3]{x}-1})} [/TEX]
 
Last edited by a moderator:
D

duynhan1

m,n [TEX]\huge \in[/TEX] N

[TEX]\huge \bold{ \fbox{A_{5*} = \lim_{x \to 1} (\frac{n}{1-x^n} - \frac{1}{1-x})[/TEX]

[TEX]\huge \bold{ \fbox{A_{6*} = \lim_{x \to 1} (\frac{m}{1-x^m} - \frac{n}{1-x^n})[/TEX]
 
Last edited by a moderator:
B

bigbang195

[TEX]\huge \bold{ \fbox{A_{5*} = \lim_{x \to 1} (\frac{n}{1-x^n} - \frac{1}{1-x})[/TEX]

[TEX]\huge \bold{ \fbox{A_{6*} = \lim_{x \to 1} (\frac{m}{1-x^m} - \frac{n}{1-x^n})[/TEX]

[TEX]\huge {\color{red} \fbox{A_{5*} = \lim_{x \to 1} \bigg(\frac{n}{1-x^n} - \frac{1}{1-x} \bigg)=\lim_{x \to 1}\frac{n-\displaystyle\sum_{i=0}^{n-1}x^i}{(1-x)\displaystyle\sum_{i=0}^{n-1}x^i}=\lim_{x \to 1}\frac{\displaystyle\sum^{n-1}_{i=1}(1-x^i)}{(1-x)\displaystyle\sum_{i=0}^{n-1}x^i}=\frac{\frac{n(n-1)}{2}}{n}=\frac{n-1}{2}}}[/TEX]




[TEX]\fbox{\huge {\color{blue} A_{6*} = \lim_{x \to 1}\bigg (\frac{m}{1-x^m} - \frac{n}{1-x^n}\bigg)\\\\=\lim_{x \to 1}\bigg(\frac{m}{1-x^m}-\frac{1}{1-x}\bigg)-\lim_{x \to 1}\bigg(\frac{n}{1-x^n}-\frac{1}{1-x}\bigg)\\\\=\frac{m-1}{2}-\frac{n-1}{2}=\frac{m-n}{2}}}[/TEX]
 
D

duynhan1

[TEX]\huge \red \fbox{ A_7= \lim_{x \to 0} (\frac{\sqrt[n]{1+ax}-\sqrt[n]{1+bx}}{x})[/TEX]

[TEX]\huge \blue \fbox{A_8 = \lim_{x \to +\infty }(\frac{(x+1)(x^2+1)....(x^n+1)}{\bigg((nx)^n+1 \bigg)^{\frac{n+1}{2}}} [/TEX]
 
Top Bottom