[Toán 11] Topic giới hạn

L

lananh_vy_vp

[TEX] \\ \\ A_2 = \lim_{x \to0 }\frac{\sqrt[n]{1+ax}-1}{x} [/TEX]

[TEX]=\lim_{x \to0} \frac{{(\sqrt[n]{1+ax}-1})(\sqrt[n]{{(1+ax)}^{n-1}}+\sqrt[n]{{(1+ax)}^{n-2}}+...+\sqrt[n]{{1+ax}}+1}{x(\sqrt[n]{{(1+ax)}^{n-1}}+\sqrt[n]{{(1+ax)}^{n-2}}+...+\sqrt[n]{{1+ax}}+1}\\ \\ =\lim_{x \to0}\frac{a}{\sqrt[n]{{(1+ax)}^{n-1}}+\sqrt[n]{{(1+ax)}^{n-2}}+...+\sqrt[n]{{1+ax}}+1}\\ \\= \frac{a}{n} [/TEX]

[TEX] \\ \\ A_3 = \lim_{x\to 0 } \frac{\sqrt[n]{1+ax}-1}{\sqrt[m]{1+bx} -1} \ \ \textit{Ap dung cau 2} [/TEX]

[tex]= \lim_{x\to 0} \frac{\sqrt[n]{1+ax}-1}{x}\lim_{x\to 0} \frac{x}{\sqrt[n]{1+bx} -1} \\ \\=\frac{a.m}{b.n}[/tex]
 
Last edited by a moderator:
R

rua_it

Gửi bạn iêu :-*:



[tex]=\lim_{x \to 0} \( \frac{\sqrt{1+2x}-1}{x}+\lim_{x \to 0} \frac{\sqrt{1+2x}.\sqrt[3]{1+3x}-1}{x}+\lim_{x \to 0} \frac{\sqrt{1+2x}.\sqrt[3]{1+3x}.\sqrt[4]{1+4x}-1}{x} \)[/tex]

[tex]=\lim_{x \to 0} \( \frac{\sqrt{1+2x}-1}{x}+\lim_{x \to 0} \frac{\sqrt[3]{1+3x}-1}{x}+\lim_{x \to 0} \frac{\sqrt[4]{1+4x}-1}{x} \)[/tex]

[tex]=3[/tex]



[tex] f'(0)=\lim_{x\to0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0} \frac{\sqrt{1+2x} . \sqrt[3]{1+3x} . \sqrt[4]{1+4x}-1}{x}=3[/tex]
 
Last edited by a moderator:
H

herrycuong_boy94

vẽ đồ thị hàm số :

gif.latex


...Khó :(
 
P

phuong10a3

Last edited by a moderator:
C

chuanho

1/ [TEX]\lim_{x\to 0}\frac{(1+x)^5-(1+5x)}{x^2+x^5}[/TEX]

2/[TEX]\lim_{x\to 2}\frac{(x^2-x-2)^{20}}{(x^3-12x+16)^{10}}[/TEX]

3/[TEX]\lim_{x\to 1}\frac{x^{100}-2x+1}{x^{50}-2x+1}[/TEX]


4/[TEX]\lim_{x\to 1}\frac{x+x^2+...+x^n-n}{x-1}[/TEX]

5/[TEX]\lim_{x\to 1}\frac{x^m-1}{x^n-1}[/TEX]

6/[TEX]\lim_{x\to 1}\frac{x^{n+1}-(n+1)x+n}{(x-1)^2}[/TEX]

7/[TEX]\lim_{x\to a}\frac{(x^n-a^n)-na^{n-1}(x-a)}{(x-a)^2}[/TEX]

8/[TEX]\lim_{x\to 0}\frac{(1+mx)^n-(1+nx)^m}{x^2}[/TEX]
 
Last edited by a moderator:
V

vivietnam

3/[TEX]\lim_{x\to 1}\frac{x^{100}-2x+1}{x^{50}-2x+1}[/TEX]



4/[TEX]\lim_{x\to 1}\frac{x+x^2+...+x^n-n}{x-1}[/TEX]

5/[TEX]\lim_{x\to 1}\frac{x^m-1}{x^n-1}[/TEX]
[TEX]3=\lim_{x\to1}\frac{(x^{100}-x)-(x-1)}{(x^{50}-x)-(x-1)}=\lim_{x\to1}\frac{x^{99}+....+x-1}{x^{49}+...+x-1}=\frac{98}{48}[/TEX]
[TEX]4=\lim_{x\to1}\frac{(x-1)+(x^2-1)+...+(x^n-1)}{x-1}=\lim_{x\to1}1+x+1+x^2+x+1+....+x^{n-1}+...+1=\frac{n(n+1)}{2}[/TEX]
[TEX]5=\lim_{x\to1}\frac{x^{m-1}+...+1}{x^{n-1}+...+1}=\frac{m}{n}[/TEX]
 
Last edited by a moderator:
D

duynhan1

1/ [TEX]\lim_{x\to 0}\frac{(1+x)^5-(1+5x)}{x^2+x^5}[/TEX]

Mở ra rồi rút gọn, đáp số là
10
2/[TEX]\lim_{x\to 2}\frac{(x^2-x-2)^{20}}{(x^3-12x+16)^{10}}[/TEX]
[TEX]= \lim_{x\to 2} \frac{(x-2)^{20} (x+1)^{20} }{(x-2)^{20} (x+4)^{10} } = \frac{3^{10}}{2^{10}} [/TEX]
4.[TEX]\lim_{x\to 1} \frac{x^n+x^{n-1} +..+x-n}{x-1} = \lim_{x\to 1} \frac{x^n-1 + x^{n-1}-1 +...+(x-1)}{x-1}= n + (n-1) + ....+ 1 = \frac12n(n+1) [/TEX]

Chú ý : [TEX]\blue \lim_{x \to 1} \frac{x^n - 1}{x-1} = n [/TEX]

6/[TEX]\lim_{x\to 1}\frac{x^{n+1}-(n+1)x+n}{(x-1)^2}[/TEX]
[TEX]= \lim_{x \to 1} \frac{x^{n+1} - x}{(x-1)^2} + \frac{n}{1-x} \\ = \lim_{x \to 1} \frac{x^n+x^{n-1}+...+1-n}{x-1} \\ = \frac12 n(n+1) \text{Theo cau 4}[/TEX]
7/[TEX]\lim_{x\to a}\frac{(x^n-a^n)-na^{n-1}(x-a)}{(x-a)^2}[/TEX]


Mấy bài trên làm khá chi tiết :D, bài này tắt xí ;)
[TEX]\Large = \lim_{x \to a} \frac{x^{n-1} + x^{n-2} . a + ...+ a^{n-1} - n.a^{n-1}}{x-a} \\ = \lim_{x \to a} \frac{x^{n-1} - a^{n-1} + a.(x^{n-2} - a^{n-2}) + ...+ a^{n-2} ( x - a) }{x-a}\\ = 1.(n-1).a^{n-2} + a . (n-2) . a^{n-1} + ....+a^{n-1} . 2 .a + a^{n-2} .1.1 \\ = a^{n-2}( (n-1) + (n-2) + .. + 1) \\=\frac12 . n(n-1) .a^{n-2}[/TEX]
8/[TEX]A_8 = \lim_{x\to 0}\frac{(1+mx)^n-(1+nx)^m}{x^2}[/TEX]


[TEX]\Large A_8 = \lim_{x \to 0} \frac{m\( (1+mx)^{n-1} + (1+mx)^{n-2} + ...+1 ) - n \( (1+nx)^{m-1} + (1+nx)^{m-2} + ..+1 \) }{x} \\ = \lim_{x \to 0} \frac{m\( (1+mx)^{n-1} + (1+mx)^{n-2} + ...+1 -n ) - n \( (1+nx)^{m-1} + (1+nx)^{m-2} + ..+1 -m \) }{x} [/TEX]

Đến đây ta xử bài toán nhỏ sau :


[TEX]\blue \lim_{x \to 0} \frac{(1+ax)^n - 1}{x} = \frac{ax\( (1+ax)^{n-1} +(1+ax)^{n-2} +...+1 \) }{x} = na [/TEX]


Áp dụng vào bài toán thì ta có :


[TEX]\Large A_8 = \lim_{x \to 0} m\( m(n-1) + m(n-2) + ...+m.1 \) - n \( n(m-1) + n(m-2) + ..+m.1 \) } \\ = \frac{m^2n(n-1)}{2} - \frac{ n^2.m(m-1)}{2} \\ =-\frac12 mn ( m-n) [/TEX]
 
Last edited by a moderator:
H

herrycuong_boy94

i

Ta có : [TEX]\Large \red \sqrt[n]{a} > 1 [/TEX]

Lại có :
[TEX]\Large \sqrt[n]{a} \le \frac{a+(n-1)}{n} = 1 + \frac{a-1}{n} [/TEX]

Mà : [TEX]\lim (1+\frac{a-1}{n} ) = 1 \Rightarrow \lim( \sqrt[n]{a} ) = 1[/TEX]

Làm j có cái định lí nào như thế này nhỉ
______________________________

Định lý kẹp ;)..................................................................................
 
Last edited by a moderator:
H

herrycuong_boy94

Chứng minh PT có nghiệm thuôc (0;360) với mọi a, b

a.cos3x+b.cos2x+sinx+cosx=0
 
V

vienkeongam

Chắc bây giờ ai cũng học giới hạn rồi:):)

[tex] \lim_{x\to 0} \frac{tan(tanx)-sin(sinx)}{tanx-sinx}[/tex]
 
D

duynhan1

Chắc bây giờ ai cũng học giới hạn rồi:):)

[tex]A= \lim_{x\to 0} \frac{tan(tanx)-sin(sinx)}{tanx-sinx}[/tex]

[TEX]A= \lim_{x \to 0} \frac{ tan(tan x) - tan(sin x)}{tan x - sin x} + \lim_{x \to 0} \frac{tan( sin x) - sin ( sin x)}{ tan x - sin x}[/TEX]

[TEX]A_1 = \lim_{x \to 0} \frac{ tan(tan x) - tan(sin x)}{tan x - sin x} \\ =\lim_{x \to 0} \frac{sin ( tan x - sin x)}{( tan x - sin x) cos(tanx). cos( sin x)} = 1 [/TEX]

[TEX]A_2 = \lim_{x \to 0} \frac{tan( sin x) - sin ( sin x)}{ tan x - sin x} \\ = \lim_{x \to 0} \frac{ sin (sin x) ( \frac{1}{ cos( sin x)} -1)}{ sin x ( \frac{1}{ cos x } - 1)} \\ = \lim_{x \to 0 } \frac{ 1 - cos ( sin x)}{1 - cos x} \\ =\lim_{x \to 0 } \frac{ 2 sin^2( \frac{sin x}{2})}{ 2 sin^2{\frac{x}{2}} } = 1 [/TEX]

[TEX]A= A_1 + A_2 = 2[/TEX]
 
G

gayal

Tìm các giới hạn sau:
1. [TEX]\lim_{x->1}\frac{x^{100}-2x+1}{x^{50}-2x+1}[/TEX]

2. [TEX]\lim_{x->1}\frac{x^{n+1}-(n+1)+n}{(x-1)^2}[/TEX]
 
V

vienkeongam

[TEX]\lim_{x\rightarrow 0}\frac{4sin( \frac{\pi }{6}+x )sin ( \frac{\pi }{6} +2x )-1}{sinx}[/TEX]

[TEX]=\lim_{x\rightarrow 0}\frac{4sin( \frac{\pi }{6}+x ) \bigg(sin ( \frac{\pi }{6} +2x ) - sin { \frac{\pi}{6}} \bigg) + 2 ( sin ( x + \frac{\pi}{6}) - sin {\frac{\pi}{6}} )}{sinx}[/TEX]
 
Last edited by a moderator:
B

balep

Tìm các giới hạn sau:
1. [TEX]\lim_{x->1}\frac{x^{100}-2x+1}{x^{50}-2x+1}[/TEX] (1)

2. [TEX]\lim_{x->1}\frac{x^{n+1}-(n+1)+n}{(x-1)^2}[/TEX] (2)

1. [TEX]\lim_{x->1}\frac{x(x^{99}-1)-(x-1)}{x(x^{49}-1)-(x-1)}[/TEX][TEX]=\lim_{x->1}\frac{(x-1)[(x)(x^{98}+x^{97}+...+1)-1]}{(x-1)[(x)(x^{48}+x^{48}+...+1)-1)]}=\lim_{x->1}\frac{(x)(x^{98}+x^{97}+...1)-1}{(x)(x^{48}+x^{48}+..+1)-1}=\frac{98}{48}[/TEX]

2. [TEX]\lim_{x->1} \frac{x^{n+1}-1}{(x-1)^{2}}=\lim_{x->1}\frac{x^{n}+x^{n-1}+...+1}{x-1}[/TEX]
Tới đây dùng quy tắc 2 của hàm số :)>-

Bài 2 đề sai !! Không ai ra đề thế cả :D
[TEX]\red \lim_{x->1} \frac{x^{n+1}-(n+1) x + n }{(x-1)^{2}} [/TEX]
 
Last edited by a moderator:
M

myhue.a1

bài 1 tìm lim
1
[tex] \lim_{x\to 1} (\frac{2}{1-x^2}-\frac{3}{1-x^3})[/tex]


[TEX]= \lim_{x\to1}\frac{2(1+x+x^{2})- 3(1+x)}{(1-x)(1+x)(1+x+x^{2})}[/TEX]

[TEX]=\lim_{x\to1}\frac{(2x^{2}-x-1)}{(1-x)(1+x)(1+x+x^{2})}[/TEX]

[TEX]\red =\lim_{x\to1}\frac{(x-1)(2x+1)}{(1-x)(1+x)(1+x+x^{2})}[/TEX]

[TEX]\red =\lim_{x\to1}\frac{2x+1}{(1+x)(1+x+x^{2})}[/TEX]

[TEX]\red = \frac12 [/TEX]


Kiểm tra giúp mình nhé! Thanks :)
 
Last edited by a moderator:
Top Bottom