Bài 1 :Cho a,b,c là ba số thực thoả mãn [TEX](a-b)(b-c)(c-a)\neq 0[/TEX].Chứng minh:
[TEX](a^2+b^2+c^2)[\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}]\geq\frac{9}{2}[/TEX]
[TEX](a^2+b^2+c^2)[\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}]\geq\frac{9}{2}=\frac{a^2+b^2}{(a-b)^2}+\frac{b^2+c^2}{(b-c)^2}+\frac{c^2+a^2}{(c-a)^2}+\frac{c^2}{(a-b)^2}+\frac{b^2}{(c-a)^2}+\frac{a^2}{(b-c)^2}(1)[/TEX]
Đặt:
[TEX]\frac{a+b}{a-b}=m;\frac{b+c}{b-c}=n;\frac{c+a}{c-a}=p;\frac{c}{a-b}=x;\frac{b}{c-a}=y;\frac{a}{b-c}=z[/TEX]
Khi đó ta có:
[TEX](m+1)(n+1)(p+1)=(m-1)(n-1)(p-1)[/TEX]
[TEX]\Rightarrow mn+np+pm=-1[/TEX]
[TEX]\Rightarrow m^2+n^2+p^2 \geq -(2mn+np+pm)=2[/TEX]
[TEX]\Rightarrow (\frac{a+b}{a-b})^2+(\frac{b+c}{b-c})^2+(\frac{c+a}{c-a})^2\geq 2[/TEX]
[TEX]\Rightarrow \frac{(a+b)^2+(a-b)^2}{(a-b)^2}+\frac{(b+c)^2+(b-c)^2}{(b-c)^2}+\frac{(c+a)^2+(c-a)^2}{(c-a)^2} \geq 5[/TEX]
[TEX]\Rightarrow \frac{a^2+b^2}{(a-b)^2}+\frac{b^2+c^2}{(b-c)^2}+\frac{c^2+a^2}{(c-a)^2} \geq \frac{5}{2} (2)[/TEX]
Tương tự ta cũng có:
[TEX](x+1)(y+1)(z+1)=(x-1)(y-1)(z-1)[/TEX]
[TEX]\Rightarrow xy+yz+zx=-1[/TEX]
[TEX]\Rightarrow x^2+y^2+z^2 \geq 2[/TEX]
[TEX]\Rightarrow \frac{c^2}{(a-b)^2}+\frac{b^2}{(c-a)^2}+\frac{a^2}{(b-c)^2} \geq2(3)[/TEX]
[TEX](1);(2);(3)\Rightarrow DPCM[/TEX]