L
[TEX]37/ cos^4x + sin^4x + cos(x - \frac{\pi}{4})sin(3x - \frac{\pi}{4}) - \frac{3}{2} = 0[/TEX]
[TEX]39/ 4cos^3x + 3\sqrt{2}sin2x = 8cosx[/TEX]
[tex]cos^4x + sin^4x + cos(x - \frac{\pi}{4})sin(3x - \frac{\pi}{4}) - \frac{3}{2} = 0[/TEX][TEX]37/ cos^4x + sin^4x + cos(x - \frac{\pi}{4})sin(3x - \frac{\pi}{4}) - \frac{3}{2} = 0[/TEX]
Các bạn vào ủng hộ nha!![]()
[TEX]36/ cos^23xcos2x - cos^2x = 0[/TEX]
Các bạn vào ủng hộ nha!
[tex]cos(2x + \frac{\pi}{4}) + cos(2x - \frac{\pi}{4}) + 4sinx = 2 + \sqrt{2}(1 - sinx)[/TEX][TEX]40/ cos(2x + \frac{\pi}{4}) + cos(2x - \frac{\pi}{4}) + 4sinx = 2 + \sqrt{2}(1 - sinx)[/TEX]
Các bạn vào ủng hộ nha!![]()
[TEX]42/ cotx - tanx + 4sin2x = \frac{2}{sin2x}[/TEX]
[TEX]44/ tanx - sin2x - cos2x + 2(2cosx - \frac{1}{cosx}) = 0[/TEX]
[tex]cotx - 1 = \frac{cos2x}{1 + tanx} + sin^2x - \frac{1}{2}sin2x[/TEX][TEX]41/ cotx - 1 = \frac{cos2x}{1 + tanx} + sin^2x - \frac{1}{2}sin2x[/TEX]
cotx−1=1+tanxcos2x+sin2x−21sin2x
⇒cotx−1=1+cosxsinx(cos2x−sin2x)+sin2x−21sin2x
⇒sinxcosx−1=sinx+cosxcosx.(cos2x−sin2x)+sin2x−21sin2x
⇒sinxcosx−sinx=sin2x+cos2x−cosx.sinx−21sin2x
⇒cosx−sinx=sinx.(1−sin2x)
⇒cosx−sinx=sinx.(cosx−sinx)2
đk........
\Leftrightarrow [TEX]\frac{sin x}{ co s x}- sin x co s x -cos2x + 2( \frac{2cos^2x -1}{cosx}) = 0[/TEX]
\Leftrightarrow [TEX]\frac{sin x}{ co s x}(1-2cos^2x) - cos2x + 2( \frac{cos2x -1}{cosx}) = 0[/TEX]
\Leftrightarrow[TEX] \- \frac{sin x}{ co s x} cos2x - cos2x+ 2( \frac{cos2x -1}{cosx}) = 0[/TEX]
\Leftrightarrow [TEX]\-cos2x( sin x + co s x)-2)=0[/TEX]
[TEX]\Leftrightarrow (1-sin^2x)^2+sin^6x=1-2sin^2x[/TEX][TEX]46/ cos^4x + sin^6x = cos2x[/TEX]
![]()
có [TEX]cotg(x+y)=\frac{1-tgxtgy}{tgx+tgy}[/TEX][TEX]49/tan^2x + tan^2y + cot^2(x+y) = 1[/TEX]
[TEX]48/sin^2x + sin^2y + sin^2(x+y) = \frac{9}{4}[/TEX]
![]()
[TEX]50/x^2 - 2xsinxy + 1 = 0[/TEX]
[TEX]47/sin^2x + \frac{1}{4}sin^23x = sinxsin^23x[/TEX]
![]()
[TEX]43/ \frac{3sin3x - \sqrt{3}cos9x - 1}{sin2x + sinx} = 4sin^23x(2cosx - 1)[/TEX]
[TEX]45/ (1 + 2cos3x)sinx + sin2x = 2sin^2(2x + \frac{\pi}{4})[/TEX]
[TEX][TEX]43/ \frac{3sin3x - \sqrt{3}cos9x - 1}{sin2x + sinx} = 4sin^23x(2cosx - 1)[/TEX]