L
lan_phuong_000
13)
$2sinx + \sqrt{2}.sin2x = 0$
\Leftrightarrow $2sinx(1 + \sqrt{2}.cosx) = 0$
\Leftrightarrow $\left[\begin{matrix}sinx = 0\\ cosx=\dfrac{-1}{\sqrt{2}} \end{matrix}\right.$
14)
$sin^22x + cos^23x = 1$
\Leftrightarrow $\dfrac{1 - cos4x}{2} + \dfrac{cos6x +1}{2} = 1$
\Leftrightarrow $ - cos4x + cos6x + 2 = 2$
\Leftrightarrow $cos6x = cos4x$
15)
$sin5x.cos3x = sin6x.cos2x$
\Leftrightarrow $\dfrac{1}{2}.(sin2x + sin 8x) = \dfrac{1}{2}.(sin4x + sin 8x)$
\Leftrightarrow $sin2x = sin4x$
$2sinx + \sqrt{2}.sin2x = 0$
\Leftrightarrow $2sinx(1 + \sqrt{2}.cosx) = 0$
\Leftrightarrow $\left[\begin{matrix}sinx = 0\\ cosx=\dfrac{-1}{\sqrt{2}} \end{matrix}\right.$
14)
$sin^22x + cos^23x = 1$
\Leftrightarrow $\dfrac{1 - cos4x}{2} + \dfrac{cos6x +1}{2} = 1$
\Leftrightarrow $ - cos4x + cos6x + 2 = 2$
\Leftrightarrow $cos6x = cos4x$
15)
$sin5x.cos3x = sin6x.cos2x$
\Leftrightarrow $\dfrac{1}{2}.(sin2x + sin 8x) = \dfrac{1}{2}.(sin4x + sin 8x)$
\Leftrightarrow $sin2x = sin4x$